【題目】下列說(shuō)法中,正確的是:( )

A. 命題“若,則”的否命題為“若,則

B. 命題“存在,使得”的否定是:“任意,都有

C. 若命題“非”與命題“”都是真命題,那么命題一定是真命題

D. 命題“若,則”的逆命題是真命題

【答案】C

【解析】對(duì)于A,命題a>b,則2a>2b-1”的否命題為a≤b,則2a≤2b-1”;A不正確;
對(duì)于B,命題存在xR,使得x2+x+1<0”的否定是:任意xR,都有x2+x+1≥0”;B不正確;
對(duì)于C,若命題p”是真命題則P是假命題,命題“pq”是真命題,那么命題q一定是真命題,∴C正確;
對(duì)于D,命題a2+b2=0,則ab=0”的逆命題是ab=0a2+b2=0,顯然不正確,∴D不正確;
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x,y)是直線(xiàn)kx+y+4=0(k>0)上一動(dòng)點(diǎn),PA,PB是圓C:x2+y2﹣2y=0的兩條切線(xiàn),A,B是切點(diǎn),若四邊形PACB的最小面積是2,則k的值為(
A.3
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間 上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1當(dāng),求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時(shí),函數(shù)有唯一零點(diǎn),求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn , 若Sk=90.
(1)求a及k的值;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求橢圓的標(biāo)準(zhǔn)方程
(1)已知某橢圓的左右焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且經(jīng)過(guò)點(diǎn)P( ),求該橢圓的標(biāo)準(zhǔn)方程;
(2)已知某橢圓過(guò)點(diǎn)( ,﹣1),(﹣1, ),求該橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),記.

(1)求函數(shù)的定義域及其零點(diǎn);

(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年6月22 日,“國(guó)際教育信息化大會(huì)”在山東青島開(kāi)幕.為了解哪些人更關(guān)注“國(guó)際教育信息化大會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間 內(nèi)的人分別稱(chēng)為 “青少年”和“中老年”.

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);

(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”;

附:參考公式,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G分別是棱A1B1、BB1、B1C1的中點(diǎn),則下列結(jié)論中:
①FG⊥BD
②B1D⊥面EFG
③面EFG∥面ACC1A1
④EF∥面CDD1C1
正確結(jié)論的序號(hào)是(

A.①和②
B.②和④
C.①和③
D.③和④

查看答案和解析>>

同步練習(xí)冊(cè)答案