【題目】正整數(shù), , 是等腰三角形的三邊長,并且,這樣的三角形有( )個.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】可以化為(a+b)(c+1)=24,其中a,b,c都是正整數(shù),并且其中兩個數(shù)相等,
令a+b=A,c+1=C則A,C為大于2的正整數(shù),
那么24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合2×12,3×8,4×6,6×4,3×8,2×12,
①、A=2,C=12時,c=11,a+b=2,無法得到滿足等腰三角形的整數(shù)解;
②、A=3,C=8時,c=7,a+b=3,無法得到滿足等腰三角形的整數(shù)解;
③、A=4,C=6時,c=5,a+b=4,無法得到滿足等腰三角形的整數(shù)解;
④、A=6,C=4時,c=3,a+b=6,可以得到a=b=c=3,可以組成等腰三角形;
⑤、A=8,C=3時,c=2,a+b=8,可得a=b=4,c=2,可以組成等腰三角形,a=b=4是兩個腰;
⑥、A=12,C=2時,可得a=b=6,c=1,可以組成等腰三角形,a=b=6是兩個腰。
∴一共有3個這樣的三角形。
故選C.
科目:高中數(shù)學 來源: 題型:
【題目】在高中學習過程中,同學們經(jīng)常這樣說:“如果物理成績好,那么學習數(shù)學就沒什么問題.”某班針對“高中生物理學習對數(shù)學學習的影響”進行研究,得到了學生的物理成績與數(shù)學成績具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機抽取5名學生在一次考試中的物理和數(shù)學成績,如下表:
編號 成績 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
數(shù)學() | 130 | 125 | 110 | 95 | 90 |
求數(shù)學成績關(guān)于物理成績的線性回歸方程(精確到
若某位學生的物理成績?yōu)?0分,預(yù)測他的數(shù)學成績;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),=2.71828……是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(1)求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中是的導(dǎo)函數(shù).證明:對任意>0,<.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點,且3EM=EC,試問在線段BC上是否存在一點T,使得MT∥平面BDE,若存在,試指出點T的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了解2017屆高三學生的性別和喜愛游泳是否有關(guān),對100名高三學生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為.
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com