如圖是拋物線形拱橋,當(dāng)水面離橋頂4m時(shí),水面寬8m;
(1)試建立坐標(biāo)系,求拋物線的標(biāo)準(zhǔn)方程;
(2)若水面上升1m,則水面寬是多少米?
(1)如圖建立坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0),
由已知條件可知,點(diǎn)B的坐標(biāo)是(4,-4),
代入方程,得42=-2p×(-4),即p=2.
所求拋物線標(biāo)準(zhǔn)方程是x2=-4y.
(2)若水面上升1m,則y=-3,
代入x2=-4y,得x2=-4×(-3)=12,x=±2
3

所以這時(shí)水面寬為4
3
m.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一隧道,內(nèi)設(shè)雙行線公路,同方向有兩個(gè)車(chē)道(共有四個(gè)車(chē)道),每個(gè)車(chē)道寬為3m,此隧道的截面由一個(gè)長(zhǎng)方形和一拋物線構(gòu)成,如圖所示,為保證安全,要求行駛車(chē)輛頂部(設(shè)車(chē)輛頂部為平頂)與隧道頂部在豎直方向上高度之差至少為0.25m,靠近中軸線的車(chē)道為快車(chē)道,兩側(cè)的車(chē)道為慢車(chē)道,則車(chē)輛通過(guò)隧道時(shí),慢車(chē)道的限制高度為_(kāi)_____.(精確到0.1m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

中國(guó)跳水運(yùn)動(dòng)員進(jìn)行10m跳臺(tái)跳水訓(xùn)練時(shí),身體(看成一點(diǎn))在空中的運(yùn)動(dòng)路線為如圖所示坐標(biāo)系下經(jīng)過(guò)原點(diǎn)O的一條拋物線(圖中標(biāo)出的數(shù)據(jù)為已知條件).在跳某個(gè)規(guī)定動(dòng)作時(shí),正常情況下,該運(yùn)動(dòng)員在空中的最高處距水面10
2
3
m,入水處距池邊的距離為4m,同時(shí),運(yùn)動(dòng)員在距水面高度為5m或5m以上時(shí),必須完成規(guī)定的翻騰動(dòng)作,并調(diào)整好入水姿勢(shì),否則就會(huì)出現(xiàn)失誤.
(1)求這條拋物線的解析式.
(2)在某次試跳中,測(cè)得運(yùn)動(dòng)員在空中的運(yùn)動(dòng)路線是(1)中的拋物線,且運(yùn)動(dòng)員在空中調(diào)整好入水姿勢(shì)時(shí),距池邊的水平距離為3
3
5
m,問(wèn)此次跳水會(huì)不會(huì)失誤?并通過(guò)計(jì)算說(shuō)明理由.
(3)要使此次跳水不至于失誤,該運(yùn)動(dòng)員按(1)中拋物線運(yùn)行,且運(yùn)動(dòng)員在空中調(diào)整好入水姿勢(shì)時(shí),距池邊的水平距離至多應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)曲線在點(diǎn)處的切線軸交于點(diǎn).直線分別與直線軸交于點(diǎn),以為直徑作圓,過(guò)點(diǎn)作圓的切線,切點(diǎn)為,試探究:當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)(點(diǎn)與原點(diǎn)不重合)時(shí),線段的長(zhǎng)度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y2=4x,點(diǎn)A為其上一動(dòng)點(diǎn),P為OA的中點(diǎn)(O為坐標(biāo)原點(diǎn)),且點(diǎn)P恒在拋物線C上,
(1)求曲線C的方程;
(2)若M點(diǎn)為曲線C上一點(diǎn),其縱坐標(biāo)為2,動(dòng)直線L交曲線C與T、R兩點(diǎn):
①證明:當(dāng)動(dòng)直線L恒過(guò)定點(diǎn)N(4,-2)時(shí),∠TMR為定值;
②幾何畫(huà)板演示可知,當(dāng)∠TMR等于①中的那個(gè)定值時(shí),動(dòng)直線L必經(jīng)過(guò)某個(gè)定點(diǎn),請(qǐng)指出這個(gè)定點(diǎn)的坐標(biāo).(只需寫(xiě)出結(jié)果,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角坐標(biāo)系中任給一條直線,它與拋物線y2=2x交于A、B兩點(diǎn),則
OA
OB
的取值范圍為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=
1
2
x與拋物線y=
1
8
x2-4交于A、B兩點(diǎn),線段AB的垂直平分線與直線y=-5交于Q點(diǎn).
(1)求點(diǎn)Q的坐標(biāo);
(2)當(dāng)P為拋物線上位于線段AB下方(含A、B)的動(dòng)點(diǎn)時(shí),求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一座拋物線拱橋在某時(shí)刻水面的寬度為52米,拱頂距離水面6.5米.
(1)建立如圖所示的平面直角坐標(biāo)系xoy,試求拱橋所在拋物線的方程;
(2)若一竹排上有一4米寬6米高的大木箱,問(wèn)此木排能否安全通過(guò)此橋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別是橢圓的 左,右焦點(diǎn)。
(1)若P是該橢圓上一個(gè)動(dòng)點(diǎn),求的 最大值和最小值。
(2)設(shè)過(guò)定點(diǎn)M(0,2)的 直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l斜率k的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案