【題目】為發(fā)揮體育在核心素養(yǎng)時(shí)代的獨(dú)特育人價(jià)值,越來越多的中學(xué)已將某些體育項(xiàng)目納入到學(xué)生的必修課程,甚至關(guān)系到是否能拿到畢業(yè)證.某中學(xué)計(jì)劃在高一年級(jí)開設(shè)游泳課程,為了解學(xué)生對(duì)游泳的興趣,某數(shù)學(xué)研究性學(xué)習(xí)小組隨機(jī)從該校高一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中男生60人,且抽取的男生中對(duì)游泳有興趣的占,而抽取的女生中有15人表示對(duì)游泳沒有興趣.
(1)試完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“對(duì)游泳是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)已知在被抽取的女生中有6名高一(1)班的學(xué)生,其中3名對(duì)游泳有興趣,現(xiàn)在從這6名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)游泳有興趣的概率.
(3)該研究性學(xué)習(xí)小組在調(diào)查中發(fā)現(xiàn),對(duì)游泳有興趣的學(xué)生中有部分曾在市級(jí)和市級(jí)以上游泳比賽中獲獎(jiǎng),如下表所示.若從高一(8)班和高一(9)班獲獎(jiǎng)學(xué)生中各隨機(jī)選取2人進(jìn)行跟蹤調(diào)查,記選中的4人中市級(jí)以上游泳比賽獲獎(jiǎng)的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
班級(jí) | |||||||||||
市級(jí)比賽 獲獎(jiǎng)人數(shù) | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | |
市級(jí)以上比賽獲獎(jiǎng)人數(shù) | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
【答案】(1)見解析;(2) (3)見解析
【解析】
(1)根據(jù)已知數(shù)據(jù)得到列聯(lián)表,求出K2≈,從而作出判斷;
(2)利用互斥概率加法公式即可得到結(jié)果;
(3)由題意,可知所有可能取值有0,1,2,3,求出相應(yīng)的概率值,即可得到分布列與期望值.
(1)由題得如下的列聯(lián)表
有興趣 | 無興趣 | ||
男生 | 50 | 10 | 60 |
女生 | 25 | 15 | 40 |
總計(jì) | 75 | 25 | 100 |
∴
∴沒有
(2)記事件從這6名學(xué)生中隨機(jī)抽取的3人中恰好有人有興趣,
則從這6名學(xué)生中隨機(jī)抽取的3人中至少有2人有興趣,且與互斥
∴所求概率
(3)由題意,可知所有可能取值有0,1,2,3
,,
,,
所以的分布列是
0 | 1 | 2 | 3 | |
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅱ)證明:當(dāng)時(shí),關(guān)于的不等式在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,直線過定點(diǎn).
(1)若與圓相切,求的方程;
(2)若與圓相交于,兩點(diǎn),線段的中點(diǎn)為,又與:的交點(diǎn)為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)銷某商品,顧客可采用一次性付款或分期付款購買.根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是經(jīng)銷一件該商品,若顧客采用一次性付款,商場(chǎng)獲得利潤200元若顧客采用分期付款,商場(chǎng)獲得利潤250元.
(1)求3位購買該商品的顧客中至少有1位采用一次性付款的概率
(2)求3位顧客每人購買1件該商品,商場(chǎng)獲得利潤不超過650元的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體中,,分別為棱和的中點(diǎn),則下列說正確的是( )
A.平面B.平面
C.異面直線與所成角為90°D.平面截正方體所得截面為等腰梯形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD中,異面直線AB與CD所成的角為_______,直線AB與底面BCD所成角的余弦值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,正三角形PAC所在平面與等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中點(diǎn),OH⊥PC于H.
(1)證明:PC⊥平面BOH;
(2)若,求二面角A-BH-O的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com