【題目】約公元前600年,幾何學家泰勒斯第一個測出了金字塔的高度.如圖,金字塔是正四棱錐,泰勒斯先測量出某個金字塔的底棱長約為230米;然后,他站立在沙地上,請人不斷測量他的影子,當他的影子和身高相等時,他立刻測量出該金字塔影子的頂點A與相應底棱中點B的距離約為222米.此時,影子的頂點A和底面中心O的連線恰好與相應的底棱垂直,則該金字塔的高度約為( )

A.115B.1372C.230D.2522

【答案】B

【解析】

易知,當泰勒斯的身高與影子相等時,身高與影子構成等腰直角三角形的兩直角邊,再根據(jù)金字塔高與影子所在的直角三角形與剛才的三角形相似,可知塔底到A的距離即為塔高.

當泰勒斯的身高與影子相等時,身高與影子構成等腰直角三角形的兩直角邊,

再根據(jù)金字塔高與影子所在的直角三角形與剛才的三角形相似,可知塔底到A的距離即為塔高.

所以由題意得金字塔塔高為米.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著一帶一路倡議的推進,中國與沿線國家旅游合作越來越密切,中國到一帶一路沿線國家的游客人也越來越多,如圖是20132018年中國到一帶一路沿線國家的游客人次情況,則下列說法正確的是(

20132018年中國到一帶一路沿線國家的游客人次逐年增加

20132018年這6年中,2014年中國到一帶一路沿線國家的游客人次增幅最小

20162018年這3年中,中國到一帶一路沿線國家的游客人次每年的增幅基本持平

A.①②③B.②③C.①②D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱中,為棱的中點.

1)求證:平面

2)若平面,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體中,面,面,,,,.

1)求的大。

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且

1)求證:平面;

2)求二面角的正弦值;

3)已知點在棱上,且異面直線所成角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,小王同學發(fā)現(xiàn),每個國家在疫情發(fā)生的初期,由于認識不足和措施不到位,感染人數(shù)都會出現(xiàn)快速的增長.下表是小王同學記錄的某國連續(xù)8天每日新型冠狀病毒感染確診的累計人數(shù).

日期代碼x

1

2

3

4

5

6

7

8

累計確診人數(shù)y

4

8

16

31

51

71

97

122

為了分析該國累計感染人數(shù)的變化趨勢,小王同學打算從①,②中選擇一種模型對變量xy的關系進行擬合,得到相應的回歸方程,經(jīng)過計算得,,,其中,

1)請根據(jù)散點圖,比較模型①,②的擬合效果,小王應該選擇哪個模型?

2)根據(jù)(1)問選定的模型求出相應的回歸方程(系數(shù)均保留一位小數(shù));

3)由于時差,該國截止第9天新型冠狀病毒感染確診的累計人數(shù)尚未公布.小王同學認為,如果防疫形勢沒有得到明顯改善,在數(shù)據(jù)公布之前可以根據(jù)他在(2)問求出的回歸方程來對感染人數(shù)作出預測,那么估計該地區(qū)第9天新型冠狀病毒感染確診的累計人數(shù)是多少.

附:回歸直線的最小二乘估計參考公式為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數(shù)學家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來.例如計算,將被乘數(shù)89計入上行,乘數(shù)65計入右行.然后以乘數(shù)65的每位數(shù)字乘被乘數(shù)89的每位數(shù)字,將結果計入相應的格子中,最后從右下方開始按斜行加起來,滿十向上斜行進一,如圖,即得5785.類比此法畫出的表格,若從表內(nèi)(表周邊數(shù)據(jù)不算在內(nèi))任取一數(shù),則恰取到奇數(shù)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點.

1)求實數(shù)的范圍;

2)設函數(shù)的兩個極值點分別為,且,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案