【題目】下列說法中錯誤的是_______(填序號)

命題的否定是

若一個命題的逆命題為真命題,則它的否命題也一定為真命題;

已知, ,若命題為真命題,則的取值范圍是

④“成立的充分條件.

【答案】①③④

【解析】

試題分析:特稱命題的否定是,有;故錯誤,

②∵逆命題和否命題互為逆否命題,

它們是等價命題,則逆命題為真,則否命題也為真命題,故正確,

x1x-3,即px1x-3,由,

,得2x3,即q2x3,

若(¬qp為真命題,則¬q,p為真命題,則,

即x3或x<-3,故錯誤,

當x=-3時,滿足x3,但|x|=3,則|x|3不成立,反之若|x|3,則x3且x-3,則必要性成立,

x3|x|3成立的必要不充分條件,故錯誤,

故錯誤的是①③④

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項和,向量=(1,bn), =(an-1,Sn), //

(1)若bn=2,求數(shù)列{an}通項公式;

(2)若, =0.

①證明:數(shù)列{an}為等差數(shù)列;

②設數(shù)列{cn}滿足,問是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得成等比數(shù)列,若存在,求出l、m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中

(1)若設備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;

(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月1日至30日,評委會把同學們上交作品的件數(shù)按照5天一組分組統(tǒng)計,繪制了頻率分布直方圖(如圖所示).已知從左到右各長方形的高的比為2:3:4:6:4:1,第三組的頻數(shù)為12,請解答下列各題.

(1)本次活動共有多少件作品參加評比?

(2)哪組上交的作品數(shù)量最多?有多少件?

(3)經(jīng)過評比,第四組和第六組分別有10件2件作品獲獎,問這兩組哪一組獲獎率較高?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的焦距2,離心率為,上一點坐標為

求該橢圓方程;

對于直線,橢圓總存在不同的兩點關(guān)于直線對稱,且,

實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).

1x,求向量a,c的夾角;

2x時,求函數(shù)f(x)2a·b1的值域

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5), [0.5,1),……[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù).說明理由;

)估計居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某重點高中擬把學校打造成新型示范高中,為此制定了學生七不準,一日三省十問等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學校就新規(guī)章制度隨機抽取部分學生進行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分數(shù)分成5組 ,,,,,并作出頻率分布直方圖與樣本分數(shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中的的值;

(2)在選取的樣本中,從分數(shù)在70分以下的學生中隨機抽取2名學生進行座談會,求所抽取的2名學生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

同步練習冊答案