【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中.
(1)若設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;
(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體中,分別是的中點,,過三點的的平面截去長方體的一個角后.得到如圖所示的幾何體,且這個幾何體的體積為.
(1)求證:平面;
(2)求的長;
(3)在線段上是否存在點,使直線與垂直,如果存在,求線段的長,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某中學(xué)研究性學(xué)習(xí)小組為調(diào)查市民喜歡觀看體育節(jié)目是否與性別有關(guān),隨機抽取了55名市民,得數(shù)據(jù)如下表:
喜歡 | 不喜歡 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 20 | 30 |
合計 | 30 | 25 | 55 |
(1)判斷是否有99.5%的把握認為喜歡觀看體育節(jié)目與性別有關(guān)?
(2)用分層抽樣的方法從喜歡觀看體育節(jié)目的市民中隨機抽取6人作進一步調(diào)查,將這6位市民作為一個樣本,從中任選2人,求男市民人數(shù)的分布列和期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線:,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中.
(1)若設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;
(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從社會效益和經(jīng)濟效益出發(fā),某地投入資金進行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè).根據(jù)規(guī)劃,本年度投入萬元,以后每年投入將比上年減少.本年度當?shù)芈糜螛I(yè)收入估計為萬元,由于該項建設(shè)對旅游業(yè)的促進作用,預(yù)計今后的旅游業(yè)收入每年會比上年增加.
(Ⅰ)設(shè)年內(nèi)(本年度為第一年)總投入為萬元,旅游業(yè)總收入為萬元.寫出的表達式;
(Ⅱ)至少經(jīng)過幾年旅游業(yè)的總收入才能超過總投入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是_______(填序號)
①命題“有”的否定是“有”;
②若一個命題的逆命題為真命題,則它的否命題也一定為真命題;
③已知, ,若命題為真命題,則的取值范圍是;
④“”是“”成立的充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點,直線:,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com