【題目】已知命題p:對任意,不等式恒成立;命題q:存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)當,若p且q為假,p或q為真,求m的取值范圍.
【答案】(1) [1,2].(2) (-∞,1)∪(1,2].
【解析】試題分析:(1)(2x-2)min≥m2-3m.即m2-3m≤-2,解得1≤m≤2;(2)p,q中一個是真命題,一個是假命題,解得m的取值范圍為(-∞,1)∪ (1,2].
試題解析:
(1)∵對任意x∈[0,1],不等式2x-2≥m2-3m恒成立,
∴(2x-2)min≥m2-3m.即m2-3m≤-2.
解得1≤m≤2.
因此,若p為真命題時,m的取值范圍是[1,2].
(2)∵a=1,且存在x∈[-1,1],使得m≤ax成立,
∴m≤x,命題q為真時,m≤1.
∵p且q為假,p或q為真,
∴p,q中一個是真命題,一個是假命題.
當p真q假時,則解得1<m≤2;
當p假q真時,即m<1.
綜上所述,m的取值范圍為(-∞,1)∪(1,2].
科目:高中數(shù)學 來源: 題型:
【題目】已知點為圓的圓心, 是圓上動點,點在圓的半徑上,且有點和上的點,滿足
(1)當在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,與(1)中所求點的軌跡教育不同的兩點 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
(1)由散點圖知與具有線性相關關系,求關于的線性回歸方程;(提示數(shù)據(jù): )
(2)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度.
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側(cè)棱為10,側(cè)面AA1B1B水平放置,如圖所示,點D、E、F、G分別在棱CA、CB、C1B1、C1A1上,水面恰好過點D,E,F,C,且CD=2
(1)證明:DE∥AB;
(Ⅱ)若底面ABC水平放置時,求水面的高
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廣場有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環(huán)境標志,小李,小王設計的底座形狀分別為, ,經(jīng)測量米, 米, 米,
(I)求的長度;
(Ⅱ)若環(huán)境標志的底座每平方米造價為元,不考慮其他因素,小李,小王誰的設計建造費用最低(請說明理由),最低造價為多少?()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓: 的左、右焦點分別為,上頂點為A,過點A與垂直的直線交軸負半軸于點,且,若過, , 三點的圓恰好與直線相切.過定點的直線與橢圓交于, 兩點(點在點, 之間).
(Ⅰ)求橢圓的方程;(Ⅱ)若實數(shù)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量, ,且滿足.
(1)求點的軌跡方程所代表的曲線;
(2)若點, , 是曲線上的動點,點在直線上,且滿足, ,當點在上運動時,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切. 、是橢圓的右頂點與上頂點,直線與橢圓相交于、兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當四邊形面積取最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為正實數(shù).
(1)若函數(shù)在處的切線斜率為2,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)有兩個極值點,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com