【題目】設(shè)橢圓: 的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過點(diǎn)A與垂直的直線交軸負(fù)半軸于點(diǎn),且,若過, , 三點(diǎn)的圓恰好與直線相切.過定點(diǎn)的直線與橢圓交于, 兩點(diǎn)(點(diǎn)在點(diǎn), 之間).
(Ⅰ)求橢圓的方程;(Ⅱ)若實(shí)數(shù)滿足,求的取值范圍.
【答案】(Ⅰ) ;(Ⅱ) .
【解析】試題分析:(1)由題意,得橢圓方程為.;(2)設(shè)直線方程為,,所以,利用韋達(dá)定理,就出的取值范圍.
試題解析:
(Ⅰ)因?yàn)?/span>,所以為的中點(diǎn).設(shè)的坐標(biāo)為,
因?yàn)?/span>,所以,,
且過三點(diǎn)的圓的圓心為,半徑為.因?yàn)樵搱A與直線相切,所以.
解得,所以,.
故所求橢圓方程為.
(Ⅱ/span>)①當(dāng)直線斜率存在時(shí),
設(shè)直線方程為,代入橢圓方程
得.
由,得.設(shè),,
則,.
又,所以.所以.
所以,.
所以.所以.
整理得.因?yàn)?/span>,所以,即.所以.
解得且.
又,所以.
②又當(dāng)直線斜率不存在時(shí),直線的方程為,
此時(shí),,,,
,所以.
所以,即所求的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).
(1) 求直線PB與平面POC所成角的余弦值;
(2)線段上是否存在一點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓: 的左焦點(diǎn)是,離心率為,且上任意一點(diǎn)到的最短距離為.
(1)求的方程;
(2)過點(diǎn)的直線(不過原點(diǎn))與交于兩點(diǎn)、, 為線段的中點(diǎn).
(i)證明:直線與的斜率乘積為定值;
(ii)求面積的最大值及此時(shí)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:對(duì)任意,不等式恒成立;命題q:存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)當(dāng),若p且q為假,p或q為真,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題:函數(shù)的定義域?yàn)?/span>;命題:關(guān)于的方程有實(shí)根.
(1)如果是真命題,求實(shí)數(shù)的取值范圍.
(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),平面上四個(gè)點(diǎn), , , 中有兩個(gè)點(diǎn)在橢圓上,另外兩個(gè)點(diǎn)在拋物線上.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在直線滿足以下條件:①過的焦點(diǎn);②與交于兩點(diǎn),且以為直徑的圓經(jīng)過原點(diǎn).若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)一位射箭運(yùn)動(dòng)員三次射箭恰有兩次命中的概率:先由計(jì)算機(jī)隨機(jī)產(chǎn)生0到9之間取整數(shù)的隨機(jī)數(shù),指定1,2,3,4,5表示命中,6,7,8,9,0表示不命中,再以三個(gè)隨機(jī)數(shù)為一組,代表三次射箭的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
807 966 191 925 271 932 812 458 569 683
489 257 394 027 552 488 730 113 537 741
根據(jù)以上數(shù)據(jù),估計(jì)該運(yùn)動(dòng)員三次射箭恰好有兩次命中的概率為
A. 0.20 B. 0.25 C. 0.30 D. 0.50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別是, ,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,過點(diǎn)的直線與橢圓相交于異于的不同兩點(diǎn), ,求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com