【題目】已知點(diǎn)為圓的圓心, 是圓上動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)和上的點(diǎn),滿足
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)若斜率為的直線與圓相切,與(1)中所求點(diǎn)的軌跡教育不同的兩點(diǎn) 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.
【答案】(1)(2)或
【解析】試題分析:(1)中線段的垂直平分線,所以,所以點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為2,長(zhǎng)軸為的橢圓,從而可得橢圓方程;(2)設(shè)直線,直線與圓相切,可得直線方程與橢圓方程聯(lián)立可得: ,可得,再利用數(shù)量積運(yùn)算性質(zhì)、根與系數(shù)的關(guān)系及其即可解出的范圍.
試題解析:(1)由題意知中線段的垂直平分線,所以
所以點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為2,長(zhǎng)軸為的橢圓,
故點(diǎn)的軌跡方程式
(2)設(shè)直線
直線與圓相切
聯(lián)立
所以或為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市實(shí)驗(yàn)中學(xué)校領(lǐng)導(dǎo)審時(shí)度勢(shì),深化教育教學(xué)改革,經(jīng)過師生共同努力,高考成績(jī)碩果累累,捷報(bào)頻傳,尤其是2017年某著名高校在全國(guó)范圍內(nèi)錄取的大學(xué)生中就有25名來自該中學(xué).下表為該中學(xué)近5年被錄取到該著名高校的學(xué)生人數(shù).(記2013年的年份序號(hào)為1,2014年的年份序號(hào)為2,依此類推……)
年份序號(hào) | 1 | 2 | 3 | 4 | 5 |
錄取人數(shù) | 10 | 13 | 17 | 20 | 25 |
(1)求關(guān)于的線性回歸方程,并估計(jì)2018年該中學(xué)被該著名高校錄取的學(xué)生人數(shù)(精確到整數(shù));
(2)若在第1年和第4年錄取的大學(xué)生中按分層抽樣法抽取6人,再?gòu)倪@6人中任選2人,求這2人中恰好有一位來自第1年的概率.
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在中, , , , 為的平分線,點(diǎn)在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設(shè)點(diǎn)是的中點(diǎn).
圖1 圖2
(1)求證: 平面;
(2)在圖2中,若平面,其中為直線與平面的交點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
②若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的上頂點(diǎn)到右頂點(diǎn)的距離為,左焦點(diǎn)為,過點(diǎn)且斜率為的直線交橢圓于, 兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及的取值范圍;
(Ⅱ)在軸上是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,點(diǎn)在x軸的正半軸上,過點(diǎn)M的直線與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若,且直線的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,設(shè)命題p:函數(shù)在上單調(diào)遞減;命題q:函數(shù) 在上為增函數(shù),
(1)若“p且q”為真,求實(shí)數(shù)c的取值范圍
(2)若“p且q”為假,“p或q”為真,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:對(duì)任意,不等式恒成立;命題q:存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)當(dāng),若p且q為假,p或q為真,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com