【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線路通車后,發(fā)車時(shí)間間隔(單位:分鐘)滿足,,經(jīng)測(cè)算,高鐵的載客量與發(fā)車時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿載狀態(tài),載客量為1000人;當(dāng)時(shí),載客量會(huì)在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時(shí)間間隔為5分鐘時(shí)的載客量為100人.記發(fā)車間隔為分鐘時(shí),高鐵載客量為.
(1)求的表達(dá)式;
(2)若該線路發(fā)車時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?
【答案】(1),(2)發(fā)車時(shí)間間隔為10分鐘時(shí),最大.
【解析】
(1)當(dāng)時(shí),設(shè),代入數(shù)據(jù)計(jì)算,得到解析式.
(2)考慮和兩種情況,計(jì)算的解析式,求導(dǎo)得到函數(shù)單調(diào)性,計(jì)算最值得到答案.
(1)當(dāng)時(shí),不妨設(shè),,
解得,因此.
(2)當(dāng)時(shí),,
因此,.
因?yàn)?/span>,當(dāng)時(shí),,單增;
當(dāng)時(shí),,單減,所以.
當(dāng)時(shí),,
因此,.
因?yàn)?/span>,此時(shí)單減,所以,
綜上,發(fā)車時(shí)間間隔為10分鐘時(shí),最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一枚棋子放在一個(gè)的棋盤上,記為從左、上數(shù)第行第列的小方格,求所有的四元數(shù)組,使得從出發(fā),經(jīng)過每個(gè)小方格恰一次到達(dá)(每步為將棋子從一個(gè)小方格移到與之有共同邊的另一個(gè)小方格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球運(yùn)動(dòng)員的投籃命中率為,他想提高自己的投籃水平,制定了一個(gè)夏季訓(xùn)練計(jì)劃為了了解訓(xùn)練效果,執(zhí)行訓(xùn)練前,他統(tǒng)計(jì)了10場(chǎng)比賽的得分,計(jì)算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為執(zhí)行訓(xùn)練后也統(tǒng)計(jì)了10場(chǎng)比賽的得分,成績(jī)莖葉圖如圖所示:
請(qǐng)計(jì)算該籃球運(yùn)動(dòng)員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的10場(chǎng)比賽得分的中位數(shù)、平均得分與方差;
如果僅從執(zhí)行訓(xùn)練前后統(tǒng)計(jì)的各10場(chǎng)比賽得分?jǐn)?shù)據(jù)分析,你認(rèn)為訓(xùn)練計(jì)劃對(duì)該運(yùn)動(dòng)員的投籃水平的提高是否有幫助?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,底面是邊長為的正方形,對(duì)角線與相交于點(diǎn),點(diǎn)在線段上,且,與底面所成角為.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,圓經(jīng)過橢圓的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)在橢圓上,且,.
(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)的直線與圓相交于、兩點(diǎn),過點(diǎn)與垂直的直線與橢圓相交于另一點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4。
(I)證明:AB⊥面BCDE;
(II)若AD=2,求二面角C-AD-E的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-4,極坐標(biāo)與參數(shù)方程選講]
在直角坐標(biāo)系x0y中,曲線C1的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為p=4sin9
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C3的極坐標(biāo)方程為=α,(0<α<x,p∈R),點(diǎn)A是曲線C3與C1的交點(diǎn),點(diǎn)B是曲線C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求實(shí)數(shù)α的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某市2011年新建住房400萬m2,其中250萬m2是中低價(jià)房,預(yù)計(jì)在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長8%.另外,每年新建住房中,中低價(jià)房的面積比上一年增加50萬m2,那么到哪一年底,
(1)該市歷年所建中低價(jià)房的累計(jì)面積(以2011年為累計(jì)的第一年)將首次不少于4750萬m2?
(2)當(dāng)年建造的中低價(jià)房的面積占該年建造住房面積的比例首次大于85%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,∠BAC=120°,AC=AB=2,AA1=3.
(1)求三棱柱ABC-A1B1C1的體積;
(2)若M是棱BC的一個(gè)靠近點(diǎn)C的三等分點(diǎn),求二面角A-A1M-B的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com