【題目】如圖,在長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,對(duì)角線相交于點(diǎn),點(diǎn)在線段上,且,與底面所成角為.

1)求證:;

2)求二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)推導(dǎo)出平面,進(jìn)而可得出;

2)根據(jù)直線與底面所成的角為可計(jì)算出,然后以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,利用空間向量法能計(jì)算出二面角的余弦值.

1)因?yàn)樵陂L(zhǎng)方體中,有平面,平面,,

因?yàn)樗倪呅?/span>是正方形,所以,

,從而平面.

平面,所以;

2)因?yàn)樵陂L(zhǎng)方體中,有、兩兩垂直,

以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,

由(1)知為直線與平面所成的角,

又因?yàn)?/span>與平面所成角為,所以,所以.

,得,可知,所以,

,即,故,

,,,,

所以

設(shè)平面的法向量為,則,

,令,可得,

因?yàn)?/span>平面,所以為平面的法向量,即

所以.

由圖形可知,二面角為銳角,所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,平面ABCD,,,BC//AD,已知Q是四邊形ABCD內(nèi)部一點(diǎn),且二面角的平面角大小為,若動(dòng)點(diǎn)Q的軌跡將ABCD分成面積為的兩部分,則=_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)的距離之和為,且焦距是短軸長(zhǎng)的2.

1)求橢圓的方程;

2)過線段上一點(diǎn)的直線(斜率不為0)與橢圓相交于,兩點(diǎn),當(dāng)的面積與的面積之比為時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1

求橢圓C的方程;

點(diǎn)為橢圓C上一動(dòng)點(diǎn),連接,,設(shè)的角平分線PM交橢圓C的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.延長(zhǎng)線交于點(diǎn),若的面積是面積的3倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為數(shù)列的前項(xiàng)和.任意正整數(shù),均有為遞增數(shù)列

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線路通車后,發(fā)車時(shí)間間隔(單位:分鐘)滿足,,經(jīng)測(cè)算,高鐵的載客量與發(fā)車時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿載狀態(tài),載客量為1000人;當(dāng)時(shí),載客量會(huì)在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時(shí)間間隔為5分鐘時(shí)的載客量為100.記發(fā)車間隔為分鐘時(shí),高鐵載客量為.

1)求的表達(dá)式;

2)若該線路發(fā)車時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四點(diǎn)均在雙曲線的右支上.

(1)若(實(shí)數(shù)),證明:(O是坐標(biāo)原點(diǎn));

(2)若,P是線段AB的中點(diǎn),過點(diǎn)P分別作該雙曲線的兩條漸近線的垂線,垂足為M、N,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二期中考試后,教務(wù)處計(jì)劃對(duì)全年級(jí)數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,從男、女生中各隨機(jī)抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績(jī)的頻率分布直方圖,如圖所示.

(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案