【題目】的內(nèi)角,的對(duì)邊長(zhǎng)分別為,,設(shè)的面積,滿足,則的取值范圍是__________

【答案】

【解析】

利用三角形面積公式表示出S,利用余弦定理表示出cosB,可確定B,再利用正弦定理表示出ac,代入已知等式中利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),根據(jù)正弦函數(shù)的性質(zhì)確定出范圍即可.

SacsinB,cosB,Sa2+c2b2),

acsinB2accosB,

tanB

B0,π),

B;又,△ABC的內(nèi)角和A+B+Cπ,

A0,C0,得0A,

由正弦定理,知a2sin,c2sin),

∴(1a+2c21sin+4sin)=2sin+2cos2sin)(0x),∴,

,

2sin2

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

某學(xué)校高一數(shù)學(xué)興趣小組對(duì)學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀(體育成績(jī)滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí))

14

11

13

12

9

體育成績(jī)優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請(qǐng)根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓E(ab0)的離心率為,且橢圓E的短軸的端點(diǎn)到焦點(diǎn)的距離等于2

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)己知A,B分別為橢圓E的左、右頂點(diǎn),過(guò)x軸上一點(diǎn)P(異于原點(diǎn))作斜率為k(k0)的直線l與橢圓E相交于CD兩點(diǎn),且直線ACBD相交于點(diǎn)Q.①若k1,求線段CD中點(diǎn)橫坐標(biāo)的取值范圍;②判斷是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)偶函數(shù)和奇函數(shù)的圖象如圖所示,集合A 與集合B 的元素個(gè)數(shù)分別為a,b,若,則a+b的值可能是( )

A. 12B. 13C. 14D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程;

2)斜率為的直線與拋物線交于兩點(diǎn),點(diǎn)是線段的中點(diǎn),求直線的方程,并求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在以為圓心,6為半徑的圓內(nèi)有一點(diǎn),點(diǎn)為圓上的任意一點(diǎn),線段的垂直平分線和半徑交于點(diǎn).

1)判斷點(diǎn)的軌跡是什么曲線,并求其方程;

2)記點(diǎn)的軌跡為曲線,過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),求的最大值;

3)在圓上的任取一點(diǎn),作曲線的兩條切線,切點(diǎn)分別為、,試判斷是否垂直,并給出證明過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)D是圓Ox2+y216上的任意一點(diǎn),m是過(guò)點(diǎn)D且與x軸垂直的直線,E是直線mx軸的交點(diǎn),點(diǎn)Q在直線m上,且滿足2|EQ||ED|.當(dāng)點(diǎn)D在圓O上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C

1)求曲線C的方程.

2)已知點(diǎn)P2,3),過(guò)F2,0)的直線l交曲線CAB兩點(diǎn),交直線x8于點(diǎn)M.判定直線PAPM,PB的斜率是否依次構(gòu)成等差數(shù)列?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況, 扶貧辦隨機(jī)走訪了1000位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問(wèn):這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式,若,則①;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為復(fù)數(shù),為純虛數(shù),

1)當(dāng)求點(diǎn)的軌跡方程;

2)當(dāng)時(shí),若為純虛數(shù),求:的值和的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案