【題目】在直角坐標(biāo)系 中,直線(xiàn) 的參數(shù)方程為 為參數(shù)),以該直角坐標(biāo)系的原點(diǎn) 為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓 的方程為
(1)求直線(xiàn) 的普通方程和圓 的圓心的極坐標(biāo);
(2)設(shè)直線(xiàn) 和圓 的交點(diǎn)為 、 ,求弦 的長(zhǎng).

【答案】
(1)解:由 的參數(shù)方程消去參數(shù) 得普通方程為

圓 的直角坐標(biāo)方程 ,

所以圓心的直角坐標(biāo)為 ,因此圓心的一個(gè)極坐標(biāo)為 .

(答案不唯一,只要符合要求即可)


(2)解:由(1)知圓心 到直線(xiàn) 的距離 ,

所以 .


【解析】分析:本題主要考查了直線(xiàn)的參數(shù)方程,解決問(wèn)題的關(guān)鍵是(1)消去參數(shù)即可將 的參數(shù)方程化為普通方程,在直角坐標(biāo)系下求出圓心的坐標(biāo),化為極坐標(biāo)即可;(2)求出圓心到直線(xiàn)的距離,由勾股定理求弦長(zhǎng)即可
【考點(diǎn)精析】關(guān)于本題考查的直線(xiàn)的參數(shù)方程,需要了解經(jīng)過(guò)點(diǎn),傾斜角為的直線(xiàn)的參數(shù)方程可表示為為參數(shù))才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 等比數(shù)列{bn}的各項(xiàng)均為正數(shù),滿(mǎn)足:a1=b1=1,a5=b3 , 且S3=9.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求 + +…+ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓x2+y2=1 每一點(diǎn)的,橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到曲線(xiàn)C.
(1)寫(xiě)出C的參數(shù)方程;
(2)設(shè)直線(xiàn)l:2x+y-2=0 與C的交點(diǎn)為P1,P2 ,以坐標(biāo)原點(diǎn)為極點(diǎn), x 軸的正半軸為極軸建立極坐標(biāo)系,求線(xiàn)段 P1P2 的中點(diǎn)且與 l 垂直的直線(xiàn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,,為棱的中點(diǎn).

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x+1)= ,則f(2x﹣1)的定義域?yàn)椋?/span>
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中, 為自然對(duì)數(shù)的底數(shù), …).

(1)若函數(shù)僅有一個(gè)極值點(diǎn),求的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn), ,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),直線(xiàn)l與y軸的交點(diǎn)為P.
(1)寫(xiě)出點(diǎn)P的極坐標(biāo)(ρ,θ)(其中ρ>0,0≤θ<2π);
(2)求曲線(xiàn) 上的點(diǎn)到P點(diǎn)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)當(dāng)m=1時(shí),求A∪B;
(2)若BRA,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若y=(m﹣1)x2+2mx+3是偶函數(shù),則f(﹣1),f(﹣ ),f( )的大小關(guān)系為(
A.f( )>f( )>f(﹣1)
B.f( )<f(﹣ )<f(﹣1)??
C.f(﹣ )<f( )<f(﹣1)
D.f(﹣1)<f( )<f(﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案