直角坐標(biāo)平面上三點(diǎn)A(-7,1),B(2,2),C(8,10),若D為線段BC的中點(diǎn),則向量
AD
與向量
BC
的夾角的余弦值是
 
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由中點(diǎn)坐標(biāo)公式可得D坐標(biāo),可得向量
AD
BC
的坐標(biāo),代入夾角公式可得.
解答: 解:∵A(-7,1),B(2,2),C(8,10),
又∵D為線段BC的中點(diǎn),∴D(5,6)
AD
=(12,5),
BC
=(6,8),
設(shè)向量
AD
與向量
BC
的夾角為θ,
則cosθ=
AD
BC
|
AD
||
BC
|
=
12×6+5×8
122+52
62+82
=
56
65

故答案為:
56
65
點(diǎn)評(píng):本題考查向量的夾角公式,涉及中點(diǎn)坐標(biāo)公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(1)根據(jù)以上數(shù)據(jù)寫出b,c,n;
(2)試判斷是否成績與班級(jí)是否有關(guān)?
不及格 及格 總計(jì)
甲班 4 b 40
乙班 c 24 40
    總計(jì) 20 60 n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)內(nèi),已知點(diǎn)A、B、C的坐標(biāo)分別為A(1,0)、B(0,1)、C(2,5),求
(1)
AB
,
AC
的坐標(biāo);
(2)|
AB
-
AC
|的值;
(3)cos∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=x2與直線y=2x圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=4cos2x+4
3
sinxcosx-2,x∈R.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其相對(duì)應(yīng)的x值;
(3)寫出函數(shù)的單調(diào)增區(qū)間;
(4)寫出函數(shù)的對(duì)稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)在R上是奇函數(shù),且滿足f(x)=f(x+4),f(1)=2,則f(2015)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三封信投入到4個(gè)不同的信箱中,共有
 
種投法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z∈C,且|z|=1,則|z-i|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果三個(gè)平面兩兩相交,那么它們的交線有
 
條.

查看答案和解析>>

同步練習(xí)冊(cè)答案