三封信投入到4個(gè)不同的信箱中,共有
 
種投法.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:利用分步計(jì)數(shù)原理,投放3封信,即可得到結(jié)果.
解答: 解:第1封信投到信箱有4種方法,第2封信投到信箱有4種方法,第3封信投到信箱有4種方法,
由分步計(jì)數(shù)原理可知共有4×4×4=64種方法.
故答案為:64.
點(diǎn)評(píng):本題考查分步計(jì)數(shù)原理的應(yīng)用,考查基本知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(1)若x=
π
6
,求向量
a
c
的夾角;
(2)當(dāng)x∈[
π
2
8
]時(shí),求函數(shù)f(x)=2
a
b
+1的最大值,并求此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=1,BC=
2
,M是AD中點(diǎn),N是B1C1中點(diǎn).
(Ⅰ)求證:NA1∥CM;
(Ⅱ)求證:平面A1MCN⊥平面A1BD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)平面上三點(diǎn)A(-7,1),B(2,2),C(8,10),若D為線段BC的中點(diǎn),則向量
AD
與向量
BC
的夾角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與2014°終邊相同的最小正角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
4x
x2+1
,x∈[-2,2]
的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班有4位同學(xué)住在同一個(gè)小區(qū),上學(xué)路上要經(jīng)過(guò)1個(gè)路口.假設(shè)每位同學(xué)在路口是否遇到紅綠燈是相互獨(dú)立的,且遇到紅燈的概率都是
1
3
,則最多1名同學(xué)遇到紅燈的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinx+2siny=1,且siny+cos2x-m≥0對(duì)任意的x,y∈R恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對(duì)一切正實(shí)數(shù)x恒成立,求t的取值范圍;
(2)設(shè)g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案