【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大;
(2)若b=,求a+c的取值范圍.
【答案】見解析
【解析】(1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0,
即2cos Bsin A=-sin(B+C)=-sin A,
∴cos B=-.
∵0°<B<180°,
∴B=120°.
(2)由余弦定理,得b2=a2+c2-2accos 120°=a2+c2+ac=(a+c)2-ac≥(a+c)2-2= (a+c)2,當(dāng)且僅當(dāng)a=c時取等號,
∴(a+c)2≤4,∴a+c≤2,
又a+c>b=,∴a+c∈(,2].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷增長,個人購買家庭轎車已不再是一種時尚.車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限 (單位:年)與所支出的總費用 (單位:萬元)有如下的數(shù)據(jù)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知對呈線性相關(guān)關(guān)系.
(1)試求線性回歸方程= +的回歸系數(shù),;
(2)當(dāng)使用年限為年時,估計車的使用總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個年級各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來自于同一年級的乘坐方式共有_______種(有數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)同時滿足:①對于定義域上的任意,恒有;②對于定義域上的任意, ,當(dāng)時,恒有,則稱函數(shù)為“理想函數(shù)”.在下列三個函數(shù)中:(1);(2);(3).“理想函數(shù)”有__________.(只填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且.
(Ⅰ)當(dāng)時,求函數(shù)的值域;
(Ⅱ)當(dāng)在區(qū)間上為增函數(shù)時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為上的偶函數(shù),當(dāng)時, .對于結(jié)論
(1)當(dāng)時, ;(2)函數(shù)的零點個數(shù)可以為4,5,7;
(3)若,關(guān)于的方程有5個不同的實根,則;
(4)若函數(shù)在區(qū)間上恒為正,則實數(shù)的范圍是.
說法正確的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.在正方體中,設(shè)BC的中點為M,GH的中點為N.
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點處(不需說明理由).
(2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為正整數(shù),數(shù)列滿足,,設(shè)數(shù)列滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列是等差數(shù)列,求實數(shù)的值;
(3)若數(shù)列是等差數(shù)列,前項和為,對任意的,均存在,使得成立,求滿足條件的所有整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,用符號表示不超過的最大整數(shù),若函數(shù)有且僅有3個零點,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com