【題目】為了提高生產(chǎn)線的運行效率,工廠對生產(chǎn)線的設(shè)備進行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:

1)①設(shè)所采集的個連續(xù)正常運行時間的中位數(shù),并將連續(xù)正常運行時間超過和不超過的次數(shù)填入下面的列聯(lián)表:

超過

不超過

改造前

改造后

②根據(jù)①中的列聯(lián)表,能否有的把握認為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運行時間有差異?

附:.

2)工廠的生產(chǎn)線的運行需要進行維護,工廠對生產(chǎn)線的生產(chǎn)維護費用包括正常維護費、保障維護費兩種.對生產(chǎn)線設(shè)定維護周期為天(即從開工運行到第進行維護.生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護周期,每個維護周期相互獨立.在一個維護周期內(nèi),若生產(chǎn)線能連續(xù)運行,則不會產(chǎn)生保障維護費;若生產(chǎn)線不能連續(xù)運行,則產(chǎn)生保障維護費.經(jīng)測算,正常維護費為萬元/次;保障維護費第一次為萬元/周期,此后每增加一次則保障維護費增加萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以天計)內(nèi)的維護方案:,、、.以生產(chǎn)線在技術(shù)改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護費的分布列及期望值.

【答案】1)①填表見解析;②有的把握認為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運行時間有差異;(2)答案不唯一,具體見解析.

【解析】

1)①由莖葉圖中的數(shù)據(jù)得到中位數(shù),由此可列出表格;

②根據(jù)①中的列聯(lián)表求出的觀測值,再結(jié)合臨界值表判斷即可;

2天的一個生產(chǎn)周期內(nèi)有個維護周期,一個維護周期為天,一個維護周期內(nèi),以生產(chǎn)線在技術(shù)改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,可得,設(shè)一個生產(chǎn)周期內(nèi)需要次維護,可得,故一個生產(chǎn)周期內(nèi)保障維護次的生產(chǎn)維護費為萬元,設(shè)一個生產(chǎn)周期內(nèi)的生產(chǎn)維護費為萬元,可得出的可能取值,寫出分布列,求出數(shù)學期望即可.

1)①由莖葉圖的數(shù)據(jù)可得中位數(shù)

根據(jù)莖葉圖可得:,,,則列聯(lián)表如下表所示:

超過

不超過

改造前

改造后

②根據(jù)①中的列聯(lián)表,,

因此,有的把握認為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運行時間有差異;

2天的一個生產(chǎn)周期內(nèi)有個維護周期,一個維護周期為天,

一個維護周期內(nèi),以生產(chǎn)線在技術(shù)改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,得,

設(shè)一個生產(chǎn)周期內(nèi)需要次維護,,正常維護費為萬元,

保障維護費為首項為,公差為的等差數(shù)列,共次維護需要的保障費為萬元,

故一個生產(chǎn)周期內(nèi)保障維護次的生產(chǎn)維護費為萬元,

設(shè)一個生產(chǎn)周期內(nèi)的生產(chǎn)維護費為萬元,則可能取值為、、、,

,,

,

,

的分布列為:

(萬元).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的參數(shù)方程為為參數(shù)),與圓關(guān)于直線對稱的圓為.以原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程是

1)設(shè)直線軸和軸的交點分別為,,為圓上的任意一點,求的最大值.

2)過點且與直線平行的直線交圓,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準:用水量不超過的部分按照平價收費,超過的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了40位居民某年的月均用水量(單位:噸),按照分組制作了頻率分布直方圖,

1)從頻率分布直方圖中估計該40位居民月均用水量的眾數(shù),中位數(shù);

2)在該樣本中月均用水量少于1噸的居民中隨機抽取兩人,其中兩人月均用水量都不低于0.5噸的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)(abR).

1)當b=﹣1時,函數(shù)有兩個極值,求a的取值范圍;

2)當ab1時,函數(shù)的最小值為2,求a的值;

3)對任意給定的正實數(shù)a,b,證明:存在實數(shù),當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

1)若恒成立.的最大值

2)若,。1)中的,當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB4,C是底面圓O上一點,且AC2,點D為半徑OB的中點,連接PD.

1)求證:PC在平面APB內(nèi)的射影是PD;

2)若PA4,求底面圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的菱形中, ,點分別是的中點, ,沿翻折到,連接,得到如圖的五棱錐,且

(1)求證: 平面(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,、分別為的中點,且.

1)求證:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為拋物線的焦點,點在拋物線上,過點的直線交拋物線兩點,線段的中點為,且滿足

1)若直線的斜率為1,求點的坐標;

2)若,求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案