11.已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=log${\;}_{\frac{1}{2}}$x.設(shè)a=f($\frac{6}{5}$),b=f($\frac{3}{2}$),c=f($\frac{5}{2}$) 則a,b,c的大小關(guān)系為( 。
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

分析 根據(jù)已知中f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=log${\;}_{\frac{1}{2}}$x.分別判斷a,b,c的值,或范圍,可得答案.

解答 解:∵f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=log${\;}_{\frac{1}{2}}$x.
∴a=f($\frac{6}{5}$)=f(-$\frac{4}{5}$)=-f($\frac{4}{5}$)∈(-1,0),
b=f($\frac{3}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-1,
c=f($\frac{5}{2}$)=f($\frac{1}{2}$)=1;
∴b<a<c,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的周期性,函數(shù)的奇偶性,函數(shù)求值,對(duì)數(shù)的運(yùn)算性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=log2(4x+1)-x,g(x)=log2a+log2(2x-$\frac{4}{3}$)(a>0,x>1).
(1)證明函數(shù)f(x)為偶函數(shù);
(2)若函數(shù)f(x)-g(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q分別是D1B,B1C的中點(diǎn),則PQ的長(zhǎng)為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖所示,由拋物線y2=x和直線x=1所圍成的圖形的面積等于( 。
A.1B.$\frac{4}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,在其定義域內(nèi)是減函數(shù)的是( 。
A.f(x)=2xB.f(x)=lnxC.$f(x)=\frac{1}{x}$D.$f(x)={log_{\frac{1}{3}}}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={x|4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},則(∁RA)∩B=( 。
A.(-∞,-3)∪[$\frac{5}{2}$,+∞)B.(-3,-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-3,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知等比數(shù)列{an}的公比q>0,前n項(xiàng)和為Sn,若2a3,a5,3a4成等差數(shù)列,a2a4a6=64,則an=2n-1,Sn=$\frac{{2}^{n}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\sqrt{{{log}_{\frac{1}{2}}}(3-x)}$的定義域是( 。
A.(2,3)B.(-∞,3)C.(3,+∞)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,A=60°,b=4,面積為$4\sqrt{3}$,則c的長(zhǎng)度為( 。
A.4B.$4\sqrt{3}$C.8D.$8\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案