20.函數(shù)f(x)=$\sqrt{{{log}_{\frac{1}{2}}}(3-x)}$的定義域是(  )
A.(2,3)B.(-∞,3)C.(3,+∞)D.[2,3)

分析 根據(jù)二次根式的性質(zhì)以及對數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{3-x>0}\\{3-x≤1}\end{array}\right.$,
解得:2≤x<3,
故函數(shù)的定義域是[2,3).

點評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不論a為何值,函數(shù)y=1+loga(x-1)都過定點,則此定點坐標(biāo)為(2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=log${\;}_{\frac{1}{2}}$x.設(shè)a=f($\frac{6}{5}$),b=f($\frac{3}{2}$),c=f($\frac{5}{2}$) 則a,b,c的大小關(guān)系為(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C1:x2+y2=25,圓C2:x2+y2-4x-4y-2=0,判斷圓C1與圓C2的位置關(guān)系是( 。
A.內(nèi)切B.外切C.相交D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.長方體ABCD-A1B1C1D1中,AB=1,BC=2,BB1=3,從點A出發(fā)沿表面運動到C1點的最短路程是$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某個實驗中,測得變量x和變量y的幾組數(shù)據(jù),如表:
x0.500.992.013.98
y-0.990.010.982.00
則對x,y最適合的擬合函數(shù)是( 。
A.y=2xB.y=x2-1C.y=log2xD.y=2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|2a-1≤x≤a+1},若C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=ax+4的圖象恒過定點P,則P點坐標(biāo)是(0,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,則目標(biāo)函數(shù)z=x-3y的最大值為5 

查看答案和解析>>

同步練習(xí)冊答案