3.已知等比數(shù)列{an}的公比q>0,前n項(xiàng)和為Sn,若2a3,a5,3a4成等差數(shù)列,a2a4a6=64,則an=2n-1,Sn=$\frac{{2}^{n}-1}{2}$.

分析 利用等比數(shù)列通項(xiàng)公式和等差數(shù)列性質(zhì)列出方程組,求出首項(xiàng)和公比,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an}的公比q>0,前n項(xiàng)和為Sn
2a3,a5,3a4成等差數(shù)列,a2a4a6=64,
∴$\left\{\begin{array}{l}{2({a}_{1}{q}^{4})=2({a}_{1}{q}^{2})+3({a}_{1}{q}^{3})}\\{{a}_{1}q•{a}_{1}{q}^{3}•{a}_{1}{q}^{5}=64}\end{array}\right.$,
由q>0,得q=2,${a}_{1}=\frac{1}{2}$,
∴an=$\frac{1}{2}×{2}^{n-1}$=2n-2,
Sn=$\frac{\frac{1}{2}(1-{2}^{n})}{1-2}$=$\frac{{2}^{n}-1}{2}$.
故答案為:2n-2,$\frac{{2}^{n}-1}{2}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是基礎(chǔ)題,解時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某工廠在甲、乙兩地的兩個(gè)分廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái),現(xiàn)銷售給A地10臺(tái),B地8臺(tái),已知從甲地調(diào)運(yùn)1臺(tái)至A地、B地的運(yùn)費(fèi)分別為400元和800元,從乙地調(diào)運(yùn)1臺(tái)至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從甲地調(diào)運(yùn)x臺(tái)至A地,求總費(fèi)用y關(guān)于臺(tái)數(shù)x的函數(shù)解析式;
(2)若總運(yùn)費(fèi)不超過9000元,問共有幾種調(diào)運(yùn)方案;
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)A(-1,3),B(2,6),若在x軸上存在一點(diǎn)P滿足|PA|=|PB|,則點(diǎn)P的坐標(biāo)為(5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=log${\;}_{\frac{1}{2}}$x.設(shè)a=f($\frac{6}{5}$),b=f($\frac{3}{2}$),c=f($\frac{5}{2}$) 則a,b,c的大小關(guān)系為( 。
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線 l1:ax+(a+2)y+1=0,l2:x+ay+2=0,則“l(fā)1∥l2”是“a=-1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C1:x2+y2=25,圓C2:x2+y2-4x-4y-2=0,判斷圓C1與圓C2的位置關(guān)系是( 。
A.內(nèi)切B.外切C.相交D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,BB1=3,從點(diǎn)A出發(fā)沿表面運(yùn)動(dòng)到C1點(diǎn)的最短路程是$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|2a-1≤x≤a+1},若C⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=x2-(a+b)x+3a.
(1)若不等式f(x)≤0的解集為[1,3],求實(shí)數(shù)a,b的值;
(2)若b=3,求不等式f(x)>0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案