【題目】命題p:方程表示焦點(diǎn)在y軸上的橢圓,其離心率的范圍是

命題q:某人射擊,每槍中靶的概率為,他連續(xù)射擊兩槍至少有一槍中靶的概率超過(guò),若復(fù)合命題:非p為真,p或q為真,求實(shí)數(shù)的取值范圍.

【答案】

【解析】

先根據(jù)題意得到命題p,q分別為真命題時(shí)的取值范圍,然后由非p為真,p或q為真”得到p為假命題,q為真命題,進(jìn)而得到關(guān)于的不等式組,解不等式組可得所求的范圍.

對(duì)于命題p,由橢圓的焦點(diǎn)在y軸上可得,

又離心率的范圍是,

,即

∴當(dāng)命題p為真命題時(shí),有,解得

對(duì)于命題q,根據(jù)獨(dú)立事件同時(shí)發(fā)生的概率可得,他連續(xù)射擊兩槍至少有一槍中靶的概率為,

由題意得,解得,

∴當(dāng)命題q為真命題時(shí),則有

∵非p為真命題,p或q為真命題,

∴p為假命題,q為真命題,

,解得,

∴實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

1)求證:函數(shù)上是增函數(shù);

2)不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的最小值;

2)若對(duì)于任意恒成立,求的取值范圍;

3)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,當(dāng)時(shí),.

(Ⅰ)若函數(shù)過(guò)點(diǎn),求此時(shí)函數(shù)的解析式;

(Ⅱ)若函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

(Ⅲ)設(shè),若對(duì)任意實(shí)數(shù),函數(shù)上的最大值與最小值的差不大于1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的最大值是,求的值;

2)已知,若存在兩個(gè)不同的正數(shù),當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)短軸的兩個(gè)頂點(diǎn)與右焦點(diǎn)的連線(xiàn)構(gòu)成等邊三角形,且直線(xiàn)與圓相切.

1)求橢圓的方程;

2)若直線(xiàn),都經(jīng)過(guò)橢圓的左頂點(diǎn),與橢圓分別交于,兩點(diǎn),且.求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,拋物線(xiàn)上存在一點(diǎn) 到焦點(diǎn)的距離等于

(1)求拋物線(xiàn)的方程;

(2)已知點(diǎn)在拋物線(xiàn)上且異于原點(diǎn),點(diǎn)為直線(xiàn)上的點(diǎn),且.求直線(xiàn)與拋物線(xiàn)的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,已知.

1)求數(shù)列的通項(xiàng)公式;

2)求證:數(shù)列是等差數(shù)列;

3)設(shè)數(shù)列滿(mǎn)足的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案