【題目】已知函數(shù).
(1)若函數(shù)的最大值是,求的值;
(2)已知,若存在兩個不同的正數(shù),當(dāng)函數(shù)的定義域?yàn)?/span>時,的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)對分類討論,當(dāng)時,令,根據(jù)二次函數(shù)的性質(zhì)計算可得;
(2)令,則 ,即可判斷函數(shù)的單調(diào)性,函數(shù)的定義域?yàn)?/span>時,的值域?yàn)?/span>,可轉(zhuǎn)化為函數(shù)與有兩個正交點(diǎn),即有兩個正根,即有兩個大于1的根,再根據(jù)一元二次方程的根的分布得到不等式組,即可解得.
解:(1)當(dāng)時,,不合題意;
時,令,
設(shè),則.
①若開口向上沒有最大值,故無最大值,不合題意;
②當(dāng)時,且此時對稱軸,函數(shù)的最大值是,
所以,
解得或(舍),
所以.
(2)當(dāng)時,設(shè),則的對稱軸,
所以當(dāng)時為增函數(shù),即為增函數(shù).
所以函數(shù)的定義域?yàn)?/span>時,的值域?yàn)?/span>,
可轉(zhuǎn)化為函數(shù)與有兩個正交點(diǎn),
即有兩個正根.
即,設(shè),
所以,
即有兩個大于1的根.
所以解得,
所以實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
1,2,3,
4,5,6,7,8,
9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,
……
問:(1)此表第行的第一個數(shù)與最后一個數(shù)分別是多少?
(2)此表第行的各個數(shù)之和是多少?
(3)2019是第幾行的第幾個數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,某旅行社為吸引中學(xué)生去某基地參加夏令營,推出如下收費(fèi)標(biāo)準(zhǔn):若夏令營人數(shù)不超過30,則每位同學(xué)需交費(fèi)用600元;若夏令營人數(shù)超過30,則營員每多1人,每人交費(fèi)額減少10元(即:營員31人時,每人交費(fèi)590元,營員32人時,每人交費(fèi)580元,以此類推),直到達(dá)到滿額70人為止.
(1)寫出夏令營每位同學(xué)需交費(fèi)用(單位:元)與夏令營人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)夏令營人數(shù)為多少時,旅行社可以獲得最大收入?最大收入是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PQ為某公園的一條道路,一半徑為20米的圓形觀賞魚塘與PQ相切,記其圓心為O,切點(diǎn)為G.為參觀方便,現(xiàn)新修建兩條道路CA、CB,分別與圓O相切于D、E兩點(diǎn),同時與PQ分別交于A、B兩點(diǎn),其中C、O、G三點(diǎn)共線且滿足CA=CB,記道路CA、CB長之和為.
(1)①設(shè)∠ACO=,求出關(guān)于的函數(shù)關(guān)系式;②設(shè)AB=2x米,求出關(guān)于x的函數(shù)關(guān)系式.
(2)若新建道路每米造價一定,請選擇(1)中的一個函數(shù)關(guān)系式,研究并確定如何設(shè)計使得新建道路造價最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)當(dāng)時,函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若函數(shù)與的圖像只有一個公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:方程表示焦點(diǎn)在y軸上的橢圓,其離心率的范圍是,
命題q:某人射擊,每槍中靶的概率為,他連續(xù)射擊兩槍至少有一槍中靶的概率超過,若復(fù)合命題:非p為真,p或q為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程是,直線交拋物線于兩點(diǎn)
(1)若弦AB的中點(diǎn)為,求弦AB的直線方程;
(2)設(shè),若,求證AB過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖
注:年份代碼1~7分別對應(yīng)年份2010~2016
(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請求出相關(guān)系數(shù)r,并用相關(guān)系數(shù)的大小說明y與t相關(guān)性的強(qiáng)弱;
(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2018年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,, .
參考公式:
相關(guān)系數(shù)
回歸方程 中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是中國古代數(shù)學(xué)名著.書中有如下問題;“今有十等人大官甲等十人.宮賜金依次差降之.上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中央三人未到者,亦依等次更給.問各得金幾何及未到三人復(fù)應(yīng)得金幾何.”其意思為:“宮廷依次按照等差數(shù)列賞賜甲乙丙丁戊己庚辛壬癸十位官員,前面甲乙丙三人進(jìn)來,共領(lǐng)到四斤黃金之后,便拿著離開了;接著庚辛壬癸四人共領(lǐng)到三斤黃金后,也拿著離開了;中間丁戊己三人沒到,也要按照應(yīng)分得的數(shù)量留給他們.問這十人各得黃金多少,并問沒到的三人共應(yīng)該得到多少黃金.”丁戊己三人共應(yīng)得黃金的斤數(shù)為( )
A.3B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com