【題目】對(duì)于曲線:上原點(diǎn)之外的每一點(diǎn),求證存在過(guò)的直線與橢圓相交于兩點(diǎn)、,使均為等腰三角形.

【答案】見(jiàn)解析

【解析】

首先說(shuō)明,上的每一點(diǎn)都在的內(nèi)部,從而,過(guò)的直線均與相交于兩點(diǎn).事實(shí)上,的方程可變形為

去掉原點(diǎn)有(原點(diǎn)顯然在橢圓內(nèi)部),

這表明,上的點(diǎn)在橢圓內(nèi)部.

現(xiàn)取上的點(diǎn)不同時(shí)為0).過(guò)作直線

代入橢圓方程得關(guān)于的二次方程

由①知,方程③恒有兩解,對(duì)應(yīng)著直線與橢圓的交點(diǎn)、.為使的中點(diǎn),我們令

從而,即

把①、⑤代入方程③,得

又由于交點(diǎn)

滿足

最后一式為0是因?yàn)?/span>上.而⑥式表明

可見(jiàn),對(duì)于上的點(diǎn),存在過(guò)的直線,與相交于兩點(diǎn),使為直角三角形且為斜邊的中點(diǎn).從而,均為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A(x1y1),B(x2,y2)是過(guò)F的直線與拋物線的兩個(gè)交點(diǎn)求證:

(1)y1y2=-p2,;(2)為定值;

(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行一個(gè)比賽類型的娛樂(lè)節(jié)目,兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績(jī)作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績(jī)沒(méi)有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績(jī)不少于21分,則獲得晉級(jí)

1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊(duì)第六位選手的成績(jī);

2)主持人從隊(duì)所有選手成績(jī)中隨機(jī)抽2個(gè),求至少有一個(gè)為晉級(jí)的概率;

3)主持人從兩隊(duì)所有選手成績(jī)分別隨機(jī)抽取2個(gè),記抽取到晉級(jí)選手的總?cè)藬?shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,ADCD,OAC的中點(diǎn),EBD的中點(diǎn).

(1)證明:DO⊥底面ABC;

(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于正整數(shù),若存在1,2,…,的一個(gè)排列滿足

),則稱為“循球數(shù)”.證明:

(1)9、11都是循環(huán)數(shù);

(2)為循環(huán)數(shù)的一個(gè)必要不充分條件是為質(zhì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求所有的由實(shí)數(shù)構(gòu)成的有限集合,使得,,且對(duì)中的任意四個(gè)不同的元素、、都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( ).

A.命題,,則

B.,則的逆命題為真命題

C.為真命題,則為假命題

D.王昌齡《從軍行》中兩句詩(shī)黃沙百戰(zhàn)穿金甲,不破樓蘭終不還,后一句中攻破樓蘭回到家鄉(xiāng)的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(

A.在回歸直線方程中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加個(gè)單位.

B.對(duì)分類變量XY,隨機(jī)變量的觀測(cè)值k越大,則判斷XY有關(guān)系的把握程度越小.

C.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1.

D.回歸直線過(guò)樣本點(diǎn)的中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛(ài)好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過(guò)隨機(jī)調(diào)查200名高中生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

B. 99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

同步練習(xí)冊(cè)答案