【題目】如圖所示,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

【答案】1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

試題(1)設(shè) ,由中位線定理證得 平面;(2)由 平面 平面

試題解析:(1)設(shè)AC∩BD=H,連接MH,

∵H為平行四邊形ABCD對(duì)角線的交點(diǎn),∴H為AC中點(diǎn),

又∵M(jìn)為PC中點(diǎn),∴MH為△PAC中位線,

可得MH∥PA,

MH平面MBD,PA平面MBD,

所以PA∥平面MBD.

(2)∵PD⊥平面ABCD,AD平面ABCD,

∴PD⊥AD,

又∵AD⊥PB,PD∩PB=D,

∴AD⊥平面PDB,結(jié)合BD平面PDB,得AD⊥BD

∵PD⊥BD,且PD、AD是平面PAD內(nèi)的相交直線

∴BD⊥平面PAD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)y=fx),滿足f2=0,函數(shù)y=fx+1)的圖象關(guān)于點(diǎn)(-10)中心對(duì)稱,且對(duì)任意的負(fù)數(shù)x1x2x1x2),恒成立,則不等式fx)<0的解集為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AsinC

)求B的大。

)求cosA+cosC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“晚上喝綠茶與失眠”有無(wú)關(guān)系,調(diào)查了100名人士,得到下面的列聯(lián)表:

失眠

不失眠

合計(jì)

晚上喝綠茶

16

40

56

晚上不喝綠茶

5

39

44

合計(jì)

21

79

100

由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

B. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“晚上喝綠茶與失眠無(wú)關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“晚上喝綠茶與失眠無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知拋物線y=x2+m的頂點(diǎn)M到直線l:(t為參數(shù))的距離為1
(Ⅰ)求m:
(Ⅱ)若直線l與拋物線相交于A,B兩點(diǎn),與y軸交于N點(diǎn),求|S△MAN﹣S△MBN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)、兩點(diǎn),且圓心在直線上.

(1)求圓C的方程;

(2)若直線經(jīng)過(guò)點(diǎn)且與圓C相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)exf(x)(e=2.71828…,是自然對(duì)數(shù)的底數(shù))在f(x)的定義域上單調(diào)遞增,則稱函數(shù)f(x)具有M性質(zhì),下列函數(shù):

f(x)=(x>1) f(x)=x2 f(x)=cosx f(x)=2-x

中具有M性質(zhì)的是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+.

(I)當(dāng)a=時(shí),求函數(shù)f(x)在x=0處的切線方程;

(II)函數(shù)f(x)是否存在零點(diǎn)?若存在,求出零點(diǎn)的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠為檢驗(yàn)車間一生產(chǎn)線是否工作正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測(cè)量尺寸(單位: mm )繪成頻率分布直方圖如圖所示:

(Ⅰ)求該批零件樣本尺寸的平均數(shù) x 和樣本方差 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)若該批零件尺寸 服從正態(tài)分布 ,其中 近似為樣本平均數(shù) 近似為樣本方差 ,利用該正態(tài)分布求 ;

(Ⅲ)若從生產(chǎn)線中任取一零件,測(cè)量尺寸為30mm,根據(jù) 原則判斷該生產(chǎn)線是否正常?

附: ;若, , .

查看答案和解析>>

同步練習(xí)冊(cè)答案