非空集合G關(guān)于運(yùn)算⊕滿足:(1)對(duì)任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,都有a⊕e=e⊕a=a;(3)對(duì)任意的a,b,c∈G,都有(a⊕b)⊕c=a⊕(b⊕c),則稱G關(guān)于運(yùn)算⊕為“融洽集”.現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
②G={奇數(shù)},⊕為整數(shù)的乘法.
③G={平面向量},⊕為平面向量的數(shù)量積.
④G={二次三項(xiàng)式},⊕為多項(xiàng)式加法.
⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
其中G關(guān)于運(yùn)算⊕為“融洽集”的是(  )
A、①④⑤B、①②
C、①②③⑤D、②③⑤
考點(diǎn):進(jìn)行簡單的合情推理
專題:規(guī)律型
分析:逐一驗(yàn)證幾個(gè)選項(xiàng)是否分別滿足“融洽集”的兩個(gè)條件,若兩個(gè)條件都滿足,是“融洽集”,有一個(gè)不滿足,則不是“融洽集”.
解答: 解:∵對(duì)任意兩個(gè)非負(fù)整數(shù),和仍為非負(fù)整數(shù),滿足(1),
且對(duì)于非負(fù)整數(shù)0,任何非負(fù)整數(shù)加0等于0加這個(gè)數(shù),等于這個(gè)數(shù),滿足(2),
∴①是“融洽集”.
∵對(duì)任意兩個(gè)奇數(shù),積仍為奇數(shù),滿足(1),
且對(duì)于奇數(shù)1,任何奇數(shù)乘1等于1乘這個(gè)數(shù),等于這個(gè)數(shù),滿足(2),
∴②是“融洽集”.
∵對(duì)任意兩個(gè)平面向量,數(shù)量積為數(shù)量,不滿足(1),
∴③不是“融洽集”.
∵對(duì)任意兩個(gè)二次項(xiàng)系數(shù)相反的二次三項(xiàng)式,和可能不是二次三項(xiàng)式,不滿足(1),
∴④不是“融洽集”.
∵對(duì)于虛數(shù)i,i×i=-1,不是虛數(shù),不滿足(1),
∴⑤不是“融洽集”.
故G關(guān)于運(yùn)算⊕為“融洽集”的是:①②,
故選:B
點(diǎn)評(píng):本題主要給出新定義,考查學(xué)生對(duì)集合新定義的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求y=2x2-5x+3在點(diǎn)(2,1)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列說法:
①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適.
②相關(guān)指數(shù)R2來刻畫回歸的效果,R2值越小,說明模型的擬合效果越好.
③比較兩個(gè)模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.
其中正確命題的個(gè)數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0,y>0時(shí),不等式
x
+
y
≤a
x+y
恒成立,則實(shí)數(shù)a的最小值是( 。
A、
2
2
B、
2
C、2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)建筑隊(duì)承包了兩項(xiàng)工程,每項(xiàng)工程均有三項(xiàng)任務(wù),由于工序的要求,第一項(xiàng)工程必須按照任務(wù)A、任務(wù)B、任務(wù)C的先后順序進(jìn)行,第二項(xiàng)工程必須按照任務(wù)D、任務(wù)E、任務(wù)F的先后順序進(jìn)行,建筑隊(duì)每次只能完成一項(xiàng)任務(wù),但第一項(xiàng)工程和第二項(xiàng)工程可以自由交替進(jìn)行,若公司將兩項(xiàng)工程做完,共有多少種安排方法( 。
A、12B、30C、20D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

p:|a|≤1,q:函數(shù)f(x)=ax在R上單調(diào)遞增,則¬p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x=a時(shí),函數(shù)y=ln(x+2)-x取到極大值b,則ab等于( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將等差數(shù)列{an}的前6項(xiàng)填入一個(gè)三角形的頂點(diǎn)及各邊中點(diǎn)的位置,且在圖中每個(gè)三角形頂點(diǎn)所填的三項(xiàng)也成等差數(shù)列,數(shù)列{an}的前2012項(xiàng)和S2012=4024,則滿足nan>an的n的值為( 。
A、2012B、4024
C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=x2(x-2)+1在x=1處的切線方程為( 。
A、x+2y-1=0
B、2x+y-1=0
C、x-y+1=0
D、x+y-1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案