【題目】設(shè)函數(shù)由方程到確定,對(duì)于函數(shù)給出下列命題:

①對(duì)任意,都有恒成立:

,使得同時(shí)成立;

③對(duì)于任意恒成立;

④對(duì)任意,

都有恒成立.其中正確的命題共有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

分四類情況進(jìn)行討論,畫出相對(duì)應(yīng)的函數(shù)圖象,由函數(shù)圖象判斷所給命題的真假性.

由方程知,

當(dāng)x0y0時(shí),方程為y21;

當(dāng)x0y0時(shí),方程為y21,不成立;

當(dāng)x0y0時(shí),方程為y21

當(dāng)x0y0時(shí),方程為y21;

作出函數(shù)fx)的圖象如圖所示,

對(duì)于,fx)是定義域R上的單調(diào)減函數(shù),則

對(duì)任意x1,x2R,x1x2,都有恒成立,正確;

對(duì)于,假設(shè)點(diǎn)(a,b)在第一象限,則點(diǎn)(b,a)也在第一象限,

所以,該方程組沒(méi)有實(shí)數(shù)解,所以該情況不可能;

假設(shè)點(diǎn)(a,b)在第四象限,則點(diǎn)(b,a)在第二象限,

所以,該方程組沒(méi)有實(shí)數(shù)解,所以該種情況不可能;

同理點(diǎn)(a,b)在第二象限,則點(diǎn)(b,a)在第四象限,也不可能.

故該命題是假命題.

對(duì)于,由圖形知,對(duì)于任意xR,有fxx,

2fx+x0恒成立,正確;

對(duì)于,不妨令t,則tfx1+1tfx2)﹣f[tx1+1tx2]0

f),不是恒成立,所以錯(cuò)誤.

綜上知,正確的命題序號(hào)是①③

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.設(shè)數(shù)列的前n項(xiàng)和為且滿足

1)求數(shù)列的通項(xiàng)公式;

2)若求正整數(shù)的值;

3)是否存在正整數(shù),使得恰好為數(shù)列的一項(xiàng)?若存在,求出所有滿足條件的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得,則稱是“H數(shù)列”;

(1)若數(shù)列的前n項(xiàng)和(),判斷數(shù)列是否是“H數(shù)列”?若是,給出證明;若不是,說(shuō)明理由;

(2)設(shè)數(shù)列是常數(shù)列,證明:為“H數(shù)列”的充要條件是;

(3)設(shè)是等差數(shù)列,其首項(xiàng),公差,若是“H數(shù)列”,求d的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,其中m是不等于零的常數(shù).

1時(shí),直接寫出的值域;

2)求的單調(diào)遞增區(qū)間;

3)已知函數(shù),,定義:,,,其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.例如:,,則,,,.當(dāng)時(shí),恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線的方程為,曲線的方程為.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系

(1)求曲線的直角坐標(biāo)方程;

(2)若曲線軸相交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1是函數(shù)數(shù)的導(dǎo)函數(shù),記,若在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;

(2)設(shè)實(shí)數(shù),求證:對(duì)任意實(shí)數(shù),總有成立.

附:簡(jiǎn)單復(fù)合函數(shù)求導(dǎo)法則為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,并且,數(shù)列滿足:,,記數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式

3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.若存在實(shí)數(shù),使得關(guān)于的方程有三個(gè)不同的解,且函數(shù)僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案