某幾何體的三視圖如圖所示(x=1),則該幾何體的體積為
 

考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:幾何體是直三棱柱挖去一個小直三棱柱,判斷兩個三棱柱的側(cè)棱長和底面三角形的相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱柱的體積公式計算.
解答: 解:由三視圖知:幾何體是直三棱柱挖去一個小直三棱柱,
兩個三棱柱的側(cè)棱長都是4,大三棱柱的底面三角形底邊長為2,該邊上的高為4+1=5,
小三棱柱的底面三角形底邊長為2,該邊上的高為1,
∴幾何體的體積V=
1
2
×2×5×4-
1
2
×2×1×4=16.
故答案為:16.
點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠某種產(chǎn)品的年產(chǎn)量為1000x件,其中x∈[20,100],需要投入的成本為C(x),當x∈[20,80]時,C(x)=
1
2
x2-30x+500(萬元);當x∈(80,100]時,C(x)=
20000
x
(萬元).若每一件商品售價為
lnx
x
(萬元),通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于x的函數(shù)解析式;
(2)年產(chǎn)量為多少件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果b是a和c的等差中項,y是x和z的等比中項,且x,y,z都是正數(shù).則(b-c)logmx+(c-a) logmy+(a-b) logmz=
 
,其中m>0且m≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x>1},則集合∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)范圍內(nèi),不等式||x-2|-1|≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(tan
4
,sin(-
π
6
))是叫θ終邊上一點,則cos(
2
+θ)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸,可得這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|ln(x-1)<1},B={x|
1
4
<(
1
2
x<1},則集合A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知互異的復(fù)數(shù)a,b滿足ab≠0,集合{a,b}={a2,b2},則a+b=
 

查看答案和解析>>

同步練習(xí)冊答案