已知向量
a
=(3,2),
b
=(-2,1)
,則向量
a
在向量
b
方向上的投影為
 
考點:平面向量數(shù)量積的含義與物理意義
專題:平面向量及應用
分析:投影即為|
a
|cosθ,利用數(shù)量積運算即可求出cosθ.
解答:解:設
a
b
的夾角為θ
a
=(3,2),
b
=(-2,1)

a
b
=-4,|
a
|=
13
,|
b
|=
5

∴cosθ=
-4
13
×
5

∴|
a
|cosθ=
-4
5
=-
4
5
5

故答案為:-
4
5
5
點評:本題主要考察了向量的數(shù)量積運算,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,E是正方體ABCD-A1B1C1D1的棱C1D1的中點,試求向量
A1C1
DE
所成角的余弦值是
 
.?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=60°,AB=1,且△ABC的面積為
3
,則BC邊長為( 。
A、
7
B、7
C、
13
D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n是兩條不同的直線,α、β是兩個不同的平面.下列四個命題中,正確的是(  )
A、m∥n,m⊥α,n⊥β,則α∥β
B、m∥n,m∥α,n∥β,則α∥β
C、m⊥n,m∥α,n∥β,則α⊥β
D、m⊥n,m⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列選項中,f(x)與g(x)表示同一函數(shù)的是( 。
A、f(x)=x0,g(x)=1
B、f(x)=
x2-1
,g(x)=
x+1
-
x-1
C、f(x)=x,g(x)=
x3+x
x2+1
D、f(x)=
(x+1)(x-3)
x+1
,g(x)=x-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(-6,2,3)與點M(0,3,-2),則點P關于點M的對稱點Q的坐標為( 。
A、(6,4,-7)
B、(-6,4,-7)
C、(6,-4,-7)
D、(6,4,7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用函數(shù)圖象解不等式:-1≤tanx≤
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=30°,AB=
3
,BC=1,則cosC等于(  )
A、
1
2
B、
3
2
C、
1
2
或-
1
2
D、
3
2
或-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省高三第一次診斷性考試文科數(shù)學試卷(解析版) 題型:選擇題

已知集合,則等于

A. B. C. D.

 

查看答案和解析>>

同步練習冊答案