已知某幾何圖形的三視圖如圖所示,則該圖形的表面積為
 

考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為半個(gè)圓錐,根據(jù)三視圖的數(shù)據(jù)求底面面積與高,代入公式計(jì)算.
解答: 解:由題目所給三視圖可得,該幾何體為圓錐的一半,那么該幾何體的表面積為該圓錐表面積的一半與軸截面面積的和.又該圓錐的側(cè)面展開圖為扇形,所以側(cè)面積為
1
2
×2×2π=2π,底面積為π,
觀察三視圖可知,軸截面為邊長(zhǎng)為2的正三角形,所以軸截面面積為
3

則該幾何體的表面積為2π+
3

故答案為:2π+
3
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,考查了圓錐的側(cè)面積公式,解題的關(guān)鍵是由三視圖判斷幾何體的形狀及三視圖的數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐O-ABC中,已知OA,OB,OC兩兩垂直.OA=2,OB=
6
,直線AC與平面OBC所
成的角為45°.
(Ⅰ)求證:OB⊥AC;
(Ⅱ)求二面角O-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2|x|+2|x|,當(dāng)x∈[-1,1]時(shí)有m≤f(x)≤n成立,則n-m的最小值為(  )
A、0B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A=B={-1,0,1},f:A→B是從集合A到B的有關(guān)映射,則滿足f(f(-1))<f(1)的映射的個(gè)數(shù)有(  )
A、10B、9C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1,下列向量的數(shù)量積一定不為0的是( 。
A、
AD1
B1C
B、
BD1
BC
C、
AB
AD1
D、
BD1
AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中主視圖、俯視圖與左視圖均是半徑為2的圓,則這個(gè)幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,E為AD的中點(diǎn),∠BAD=120°,PA=AB=BC=
1
2
AD,F(xiàn)是線段PB上動(dòng)點(diǎn),記λ=
PF
PB

(Ⅰ)求證:CE∥平面PAB;
(Ⅱ)設(shè)二面角F-CD-E的平面角為θ,當(dāng)tanθ=
1
2
時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
b
的夾角為
π
3
,且|
b
|=1,|
a
+2
b
|=2
3
,則|
a
|=( 。
A、1
B、
3
C、3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)函數(shù):f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=x4,f5(x)=xcosx,f6(x)=xsinx.
(Ⅰ)從中任意拿取2張卡片,其中至少有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案