(12分)已知拋物線y2=2px(p>0)的焦點為F,A,B,C為拋物線上三點。若,且。(1)求拋物線方程。(2)(文)若OA⊥OB,直線AB與x軸交于一點(m,0),求m。(2)(理)若以為AB為直徑的圓經(jīng)過坐標原點O,則求證直線經(jīng)過一定點,并求出定點坐標。

 

【答案】

解:(1)設(shè)

得:

得:

由①②得:P=2     所以,拋物線方程為:

(2)由OA⊥OB得:  聯(lián)立直線AB與拋物線的方程,由韋達定理代入運算,可解得m=0(舍)或m=4

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,準線為l.
(1)求拋物線上任意一點Q到定點N(2p,0)的最近距離;
(2)過點F作一直線與拋物線相交于A,B兩點,并在準線l上任取一點M,當M不在x軸上時,證明:
kMA+kMBkMF
是一個定值,并求出這個值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點.求證:直線AB經(jīng)過點M的充要條件是OA⊥OB,其中O是坐標原點.

查看答案和解析>>

同步練習(xí)冊答案