【題目】某校實行選科走班制度,張毅同學(xué)的選擇是物理、生物、政治這三科,且物理在A層班級,生物在B層班級,該校周一上午課程安排如表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有(

A.8B.10C.12D.14

【答案】B

【解析】

由課程表可知:物理課可以上任意一節(jié),生物課只能上第23節(jié),政治課只能上第1、3節(jié),而自習(xí)課可以上任意一節(jié).故以生物課(或政治課)進(jìn)行分類,再分步排其他科目.由計數(shù)原理可得張毅同學(xué)不同的選課方法.

由課程表可知:物理課可以上任意一節(jié),生物課只能上第2、3節(jié),政治課只能上第1、3、4節(jié),而自習(xí)課可以上任意一節(jié).

若生物課排第2節(jié),則其他課可以任意排,共有種不同的選課方法.

若生物課排第3節(jié),則政治課有種排法,其他課可以任意排,有種排法,

共有種不同的選課方法.

所以共有種不同的選課方法.

故選:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小店每天以每份5元的價格從食品廠購進(jìn)若干份食品,然后以每份10元的價格出售.如果當(dāng)天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.

(Ⅰ)若小店一天購進(jìn)16份,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;

(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(i)小店一天購進(jìn)16份這種食品,表示當(dāng)天的利潤(單位:元),求的分布列及數(shù)學(xué)期望;

(ii)以小店當(dāng)天利潤的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購進(jìn)食品16份還是17份?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù).在平面直角坐標(biāo)系中,已知點,直線,曲線軸交于點、與交于點分別是曲線與線段上的動點.

(1)用表示點到點距離;

(2)設(shè),,線段的中點在直線,求的面積;

(3)設(shè),是否存在以、為鄰邊的矩形,使得點上?若存在,求點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點

(1)證明:平面平面;

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,直線 的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

(2)設(shè)點P是曲線C上的一個動點,求它到直線的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)內(nèi)一點,直線、與邊、分別交于點、、.設(shè)分別以為直徑的兩圓交于點、,分別以為直徑的兩圓交于點、,分別以為直徑的兩圓交于點、.證明:、、、、、六點共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)R上是增函數(shù),求實數(shù)a的取值范圍;

2)求所有的實數(shù)a,使得對任意時,函數(shù)的圖象恒在函數(shù)圖象的下方;

3)若存在,使得關(guān)于x的方程有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知質(zhì)點P繞點M逆時針做勻速圓周運動(如圖1),質(zhì)點P相對于水平直線l的位置用y(米)表示,質(zhì)點在l上方時,y為正,反之,y為負(fù),是質(zhì)點與直線l的距離,位置y與時間t(秒)之間的關(guān)系為(其中,)其圖象如圖2所示.

1)寫出質(zhì)點P運動的圓形軌道半徑及從初始位置到最高點所需要的時間;

2)求的解析式,并指出質(zhì)點P第二次出現(xiàn)在直線l上的時刻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面;

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

同步練習(xí)冊答案