【題目】設(shè)常數(shù).在平面直角坐標(biāo)系中,已知點(diǎn),直線:,曲線:.與軸交于點(diǎn)、與交于點(diǎn).、分別是曲線與線段上的動(dòng)點(diǎn).
(1)用表示點(diǎn)到點(diǎn)距離;
(2)設(shè),,線段的中點(diǎn)在直線,求的面積;
(3)設(shè),是否存在以、為鄰邊的矩形,使得點(diǎn)在上?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1);(2);(3)見解析.
【解析】
(1)方法一:設(shè)B點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)之間的距離公式,即可求得|BF|;
方法二:根據(jù)拋物線的定義,即可求得|BF|;
(2)根據(jù)拋物線的性質(zhì),求得Q點(diǎn)坐標(biāo),即可求得OD的中點(diǎn)坐標(biāo),即可求得直線PF的方程,代入拋物線方程,即可求得P點(diǎn)坐標(biāo),即可求得△AQP的面積;
(3)設(shè)P及E點(diǎn)坐標(biāo),根據(jù)直線kPFkFQ=﹣1,求得直線QF的方程,求得Q點(diǎn)坐標(biāo),根據(jù)+=,求得E點(diǎn)坐標(biāo),則()2=8(+6),即可求得P點(diǎn)坐標(biāo).
(1)方法一:由題意可知:設(shè),
則,
∴;
方法二:由題意可知:設(shè),
由拋物線的性質(zhì)可知:,∴;
(2),,,則,
∴,∴,設(shè)的中點(diǎn),
,
,則直線方程:,
聯(lián)立,整理得:,
解得:,(舍去),
∴的面積;
(3)存在,設(shè),,則,,
直線方程為,∴,,
根據(jù),則,
∴,解得:,
∴存在以、為鄰邊的矩形,使得點(diǎn)在上,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的直線與直線垂直.
(1) 若,且點(diǎn)在函數(shù)的圖象上,求直線的一般式方程;
(2)若點(diǎn)在直線上,判斷直線是否經(jīng)過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)是的中點(diǎn).
求證:平面;
若直線與平面所成角為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近日,某地普降暴雨,當(dāng)?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當(dāng)發(fā)現(xiàn)時(shí)已有的壩面滲水,經(jīng)測(cè)算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟(jì)損失約為元,且滲水面積以每天的速度擴(kuò)散.當(dāng)?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時(shí)立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補(bǔ)貼費(fèi)為每人元,勞務(wù)費(fèi)及耗材費(fèi)為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.
寫出關(guān)于的函數(shù)關(guān)系式;
應(yīng)安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項(xiàng)支出費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入萬(wàn)元滿足
(1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形, 是邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.
(1)求的最大值;
(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題甲:“一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ).”命題乙:“底面為正三角形,側(cè)面為等腰三角形的三棱錐是正三棱錐.”命題丙:“過(guò)圓錐的兩條母線的截面,以軸截面的面積最大.”其中真命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com