【題目】如圖,在四棱錐中,底面是長(zhǎng)方形,側(cè)棱底面,且,過(guò)D作于F,過(guò)F作交 PC于E.
(Ⅰ)證明:平面PBC;
(Ⅱ)求平面與平面所成二面角的余弦值.
【答案】(Ⅰ)見(jiàn)解析; (Ⅱ).
【解析】【試題分析】(Ⅰ)依據(jù)題設(shè)運(yùn)用直線與平面垂直的判定定理推證; (Ⅱ)依據(jù)題設(shè)條件運(yùn)用二面角的平面角的定義求解或運(yùn)用向量的數(shù)量積公式求解:.
解法一:(Ⅰ)因?yàn)?/span>底面,所以,
由底面為長(zhǎng)方形,有,而,
所以. 而,所以. ………………………2分
又因?yàn)?/span>,
所以平面. 而,所以. ………………………4分
又,,所以平面. ………………………6分
(Ⅱ)如圖1,在面內(nèi),延長(zhǎng)與交于點(diǎn),則是平面與平面
的交線. 由(Ⅰ)知,,所以. ………………………8分
又因?yàn)?/span>底面,所以. 而,所以.
故是面與面所成二面角的平面角, ………………………10分
在Rt△PDB中, 由 ,
故面與面所成二面角的余弦為. ………………………12分
解法二:如圖2, 由,所以是平面的一個(gè)法向量; ……………………………………8分
由(Ⅰ)知,,所以是平面的一個(gè)法向量 ……………………………………10分
設(shè)平面與平面所成二面角為則,
故面與面所成二面角的余弦為. ……………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線和,使得對(duì)任意都有恒成立,則稱函數(shù)有一個(gè)寬度為的通道,給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數(shù)的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過(guò)P(3,4)點(diǎn),求a的值;
(2)比較大小,并寫(xiě)出比較過(guò)程;
(3)若,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某林區(qū)的森林蓄積量每年比上一年平均增長(zhǎng)9.5%,要增長(zhǎng)到原來(lái)的x倍,需經(jīng)過(guò)y年,則函數(shù)y=f(x)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,G為AC與BD的交點(diǎn),BE⊥平面ABCD,
(1)證明:平面AEC⊥平面BED.
(2)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(1)若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求函數(shù)的最小值;
(3)是否存在非負(fù)實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若f(1)=0,求函數(shù)f(x)的最大值;
(Ⅱ)令,討論函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若a=2,正實(shí)數(shù)x1,x2滿足證明
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com