正四棱錐P-ABCD的所有棱長都相等,則側(cè)棱與底面所成的角為           .

試題分析:根據(jù)題意,由于正四棱錐P-ABCD的所有棱長都相等,可知頂點(diǎn)在底面的射影為底面的中心,則可知側(cè)棱長假設(shè)為2
高為 ,則可知側(cè)棱與底面所成的角的正弦值為 ,故可知角為
點(diǎn)評:解決的關(guān)鍵是根據(jù)線面角的定義,作出頂點(diǎn)在底面的射影,然后得到線面角,求解,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是空間中互不相同的直線,是不重合的兩平面,則下列命題中為真命題的是(    )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是均以為斜邊的等腰直角三角形,,分別為,的中點(diǎn),的中點(diǎn),且平面.

(1)證明:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知P是正方形ABCD外一點(diǎn),且PA=3,PB=4,則PC的最大值是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點(diǎn)P,使得DP與平面ACB1平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn).

求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐S—ABC的底面是正三角形,A點(diǎn)在側(cè)面SBC上的射影H是△SBC的垂心.

(1)求證:BC⊥SA
(2)若S在底面ABC內(nèi)的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四邊形ABCD為平行四邊形,BC⊥平面ABEAEBE,BE = BC = 1,AE = ,M為線段AB的中點(diǎn),N為線段DE的中點(diǎn),P為線段AE的中點(diǎn)。

(1)求證:MNEA;
(2)求四棱錐MADNP的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m,n是兩條不重合的直線,是三個兩兩不重合的平面,給出下列四個命題:
①若m,m,則; ②若
③若m//,n //,m//n 則// ④若m,m//,則
其中真命題是(   )
A.①和②B.①和③C.③和④D.①和④

查看答案和解析>>

同步練習(xí)冊答案