【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
【答案】(1)見解析;(2)
【解析】
(1)推導(dǎo)出BC⊥PO,BC⊥DE,從而BC⊥平面PED,由此能證明平面PED⊥平面BCF;
(2)取AD的中點G,連結(jié)BG,FG,從而BG∥DE,進而BG∥平面PDE,平面BGF∥平面PDE,由此能求出四棱錐F﹣ABED的體積.
證明:平面ABCD,平面ABCD,,
依題意是等邊三角形,E為棱BC的中點,,
又,PO,平面PED,平面PED,
平面BCF,平面平面BCF.
解:Ⅱ取AD的中點G,連結(jié)BG,FG,
底面ABCD是菱形,E是棱BC的中點,,
平面PDE,平面PDE,平面PDE,
平面PDE,,平面平面PDE,
又平面平面,平面平面,
,為PA的中點,
,
點F到平面ABED的距離為,
四棱錐的體積:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為4,M是AD的中點,動點N在正方形ABCD的內(nèi)部或其邊界移動,并且滿足,則的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的值組成的集合;
(2)設(shè)關(guān)于的方程的兩個非零實根為、.試問:是否存在實數(shù),使得不等式對任意及 恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分),分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學(xué)生中隨機抽取一名學(xué)生,該學(xué)生的比賽成績不低于80分”,估計的概率;
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”’,比賽成績低于80分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍球的個數(shù),設(shè)一、二、三等獎如下:
獎級 | 摸出紅、藍球個數(shù) | 獲獎金額 |
一等獎 | 3紅1藍 | 200元 |
二等獎 | 3紅0藍 | 50元 |
三等獎 | 2紅1藍 | 10元 |
其余情況無獎且每次摸獎最多只能獲得一個獎級.
(1)求摸獎?wù)叩谝淮蚊驎r恰好摸到1個紅球的概率;
(2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(是自然對數(shù)的底數(shù),).
(1)求的最值;
(2)討論方程的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位、百位、萬位數(shù)用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點為坐標(biāo)原點,直線經(jīng)過拋物線的焦點.
(1)若點到直線的距離為, 求直線的方程;
(2)設(shè)點是直線與拋物線在第一象限的交點.點是以點為圓心,為半徑的圓與軸負(fù)半軸的交點.試判斷直線與拋物線的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)檔有多部優(yōu)秀電影上映,其中《流浪地球》是比較火的一部.某影評網(wǎng)站統(tǒng)計了100名觀眾對《流浪地球》的評分情況,得到如下表格:
評價等級 | ★ | ★★ | ★★★ | ★★★★ | ★★★★★ |
分?jǐn)?shù) | 0~20 | 2140 | 4160 | 61~80 | 81100 |
人數(shù) | 5 | 2 | 12 | 6 | 75 |
(1)根據(jù)以上評分情況,試估計觀眾對《流浪地球》的評價在四星以上(包括四星)的頻率;
(2)以表中各評價等級對應(yīng)的頻率作為各評價等級對應(yīng)的概率,假設(shè)每個觀眾的評分結(jié)果相互獨立.
(i)若從全國所有觀眾中隨機選取3名,求恰有2名評價為五星1名評價為一星的概率;
(ii)若從全國所有觀眾中隨機選取16名,記評價為五星的人數(shù)為X,求X的方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com