【題目】點為坐標原點,直線經(jīng)過拋物線的焦點.
(1)若點到直線的距離為, 求直線的方程;
(2)設(shè)點是直線與拋物線在第一象限的交點.點是以點為圓心,為半徑的圓與軸負半軸的交點.試判斷直線與拋物線的位置關(guān)系,并給出證明.
【答案】(1);(2)直線與拋物線相切,證明見解析.
【解析】
(1)拋物線的焦點,當(dāng)直線的斜率不存在時,即不符合題意.當(dāng)直線的斜率存在時,設(shè)直線的方程為:,所以,由此能求出直線的方程.
(2)直線與拋物線相切.設(shè),,則.因為,所以,,由此能夠證明直線與拋物線相切.
解:(1)拋物線的焦點,
當(dāng)直線的斜率不存在時,即不符合題意.
當(dāng)直線的斜率存在時,
設(shè)直線的方程為:,即.
所以,,解得:.
故直線的方程為:,即
(2)直線與拋物線相切,證明如下:
設(shè),則.
因為,所以.
所以直線的方程為:,
整理得:(1)
把方程(1)代入得:,
,
所以直線與拋物線相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問名不同性別的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | |
愛好 | 40 | 20 |
不愛好 | 20 | 30 |
由算得,
參照附表,以下不正確的有( )
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別無關(guān)”
C.有以上的把握認為“愛好該項運動與性別有關(guān)”
D.有以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過坐標原點,圓的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程;
(2)設(shè)直線和圓相交于點、兩點,求的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點分別為,軸,直線交軸于點,,為橢圓上的動點,的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設(shè)圓O:,則下列說法中正確的是( )
A.函數(shù)是圓O的一個太極函數(shù)
B.圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)
C.函數(shù)是圓O的一個太極函數(shù)
D.函數(shù)的圖象關(guān)于原點對稱是為圓O的太極函數(shù)的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);
(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;
男 | 女 | 合計 | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
合計 | 100 |
(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.
附:觀測值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,設(shè)點,定義,其中為坐標原點,對于下列結(jié)論:
符合的點的軌跡圍成的圖形面積為8;
設(shè)點是直線:上任意一點,則;
設(shè)點是直線:上任意一點,則使得“最小的點有無數(shù)個”的必要條件是;
設(shè)點是圓上任意一點,則.
其中正確的結(jié)論序號為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com