精英家教網 > 高中數學 > 題目詳情
.
(Ⅰ)若對一切恒成立,求的取值范圍;
(Ⅱ)設,且是曲線上任意兩點,若對任意的,直線AB的斜率恒大于常數,求的取值范圍;
(Ⅲ)求證:.
(Ⅰ);(Ⅱ);(Ⅲ)詳見解析

試題分析:(Ⅰ)
對一切恒成立等價于恒成立.
這只要求出函數的最小值即可.
(Ⅱ)直線的斜率為:
由題設有,不妨設
  
這樣問題轉化為函數,在上單調遞增
所以恒成立,即對任意,恒成立
這樣只需求出的最小值即可.
(Ⅲ)不等式可變?yōu)?br />
由(Ⅰ) 知 (時取等號),在此不等式中
得: 變形得:
得: 變形得:
得: 變形得:
得: 變形得:
將以上不等式相加即可得證.
試題解析:(Ⅰ)
,則
.所以上單調遞增, 單調遞減.
所以
由此得:
時,即為  此時取任意值都成立
綜上得: 
(II)由題設得,直線AB的斜率滿足:,
不妨設,則即:
令函數,則由以上不等式知:上單調遞增,
所以恒成立 
所以,對任意,恒成立
= 

(Ⅲ)由(Ⅰ) 知時取等號),
, 
  累加得


所以
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)求函數的極值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

給出下列命題:(1)導數處取得極值的既不充分也不必要條件;
(2)若等比數列的前項和,則必有;
(3)若的最小值為2;
(4)函數上必定有最大值、最小值;
(5)平面內到定點的距離等于到定直線的距離的點的軌跡是拋物線.
其中正確命題的序號是               .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列中的是函數的極值點,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若函數處有極值,則函數的圖象在處的切線的斜率為               .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

記函數的最大值為M,最小值為m,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數處取得極大值,則的值為      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

有極大值和極小值,則的取值范圍是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

函數 
(1)當時,求證:
(2)在區(qū)間恒成立,求實數的范圍。
(3)當時,求證:

查看答案和解析>>

同步練習冊答案