【題目】已知二次函數(shù),如果存在實(shí)數(shù)m,n(m<n),使得f(x)的定義域和值域分別是[m,n]和[3m,3n],則m+n=_____.
【答案】-4
【解析】
根據(jù)題意,分析f(x)的對稱軸以及最大值,進(jìn)而分3種情況討論,判斷出函數(shù)在[m,n]的單調(diào)性,進(jìn)而構(gòu)造出滿足條件的方程,解方程即可得到答案.
根據(jù)題意,二次函數(shù)(x﹣1)2的對稱軸為x=1,最大值為;
分3種情況討論:
①,當(dāng)m<n≤1時(shí),f(x)在[m,n]上遞增,則有,
解可得m=﹣4,n=0,
此時(shí)m+n=﹣4;
②,當(dāng)m<1<n時(shí),f(x)的最小值為f(1)3n,解可得n,
與m<1<n矛盾,不符合題意;
③,當(dāng)1≤m<n時(shí),f(x)在[m,n]上遞減,
若f(x)的值域分別是[3m,3n],必有3n,則有n,不符合題意;
故m+n=﹣4;
故答案為:﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 常數(shù)λ>0,且λa1an=S1+Sn對一切正整數(shù)n都成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)a1>0,λ=100,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值0,最小值,
(1)求實(shí)數(shù)的值;
(2)若關(guān)于x的方程在上有解,求實(shí)數(shù)k的取值范圍;
(3)若,如果對任意都有,試求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一隧道內(nèi)設(shè)雙行線路,其截面由一長方形和一拋物線構(gòu)成。為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部(拋物線)在豎直方向上的高度之差至少為0.5m,若行車道總寬度AB為6m,請計(jì)算通過隧道的車輛的限制高度(精確度為0.1m)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a1=a.當(dāng)n≥2時(shí),Sn2=3n2an+Sn﹣12 , an≠0,n∈N* .
(1)求a的值;
(2)設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 且cn=3n﹣1+a5 , 求使不等式4Tn>Sn成立的最小正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,橢圓上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線 與橢圓交于兩點(diǎn),點(diǎn)(0,1),且=,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,直線與x,y軸分別交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),且△OAB 的面積的最小值為
(1)求橢圓的離心率;
(2) 設(shè)點(diǎn)C、D、F2分別為橢圓的上、下頂點(diǎn)以及右焦點(diǎn),E 為線段OD 的中點(diǎn),直線F2E 與橢圓 相交于M、N 兩點(diǎn),若,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù), 為常數(shù).
(1)確定的值;
(2)求證: 是上的增函數(shù);
(3)若對于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在使得成立。
(1)函數(shù)是否屬于集合M?請說明理由;
(2)函數(shù)M,求a的取值范圍;
(3)設(shè)函數(shù),證明:函數(shù)M。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com