【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1) 求實數(shù)m的取值范圍;
(2) 求該圓半徑r的取值范圍;
(3) 求該圓心的縱坐標的最小值.
【答案】(1);(2);(3)-1.
【解析】試題分析:(1)利用方程表示圓的條件D2+E2-4F>0,建立不等式,即可求出實數(shù)m的取值范圍;
(2)利用圓的半徑,,利用配方法結(jié)合(1)中實數(shù)m的取值范圍,即可求出該圓半徑r的取值范圍;
(3)根據(jù)x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0,確定圓的圓心坐標,再消去參數(shù),得y=4(x-3)2-1,根據(jù)(1)中實數(shù)m的取值范圍,即可求得最小值..
試題解析:
(1) 方程表示圓的等價條件是D2+E2-4F>0,即有4(m+3)2+4(1-4m2)2-4(16m4+9)>0,
解得-<m<1.
(2) 半徑,
解得.
(3) 設(shè)圓心坐標為(x,y),則消去m,得y=4(x-3)2-1.
由于,所以.
故圓心的縱坐標y=4(x-3)2-1, ,所以最小值是-1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面,與都是邊長為2的等邊三角形,,與平面所成的角為,且點E在平面上的射影落在的平分線上.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海關(guān)對同時從,,三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如下表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進行檢測.
地區(qū) | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件送往甲機構(gòu)進行進一步檢測,求這2件商品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線經(jīng)過點A (1,0).
(1)若直線與圓C相切,求直線的方程;
(2)若直線與圓C相交于P,Q兩點,求三角形CPQ面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點的橫坐標為3時,為正三角形.
(1)求的方程;
(2)延長交拋物線于點,過點作拋物線的切線,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面,均為正方形,,點是棱的中點.請建立適當?shù)淖鴺讼,求解下列問題:
(Ⅰ)求證:異面直線與互相垂直;
(Ⅱ)求二面角(鈍角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線上任意一點M滿足, 其中F (-F (拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(I)求, 的標準方程;
(II)請問是否存在直線l滿足條件:① 過的焦點;② 與交于不同兩點, 且滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com