【題目】已知 ,直線 的斜率之積為 .
(Ⅰ)求頂點 的軌跡方程 ;
(Ⅱ)設(shè)動直線 ,點 關(guān)于直線 的對稱點為 ,且 點在曲線 上,求 的取值范圍.
【答案】解:(Ⅰ)設(shè)動點M(x,y),則M(x,y)滿足:
C: ,
又 ,所以 ,
故答案為:M點的軌跡方程C是: .
(Ⅱ)由題意,設(shè)點 ,由點 關(guān)于直線 的對稱點為 ,
則線段 的中點 的坐標為 且 .
又直線 的斜率 ,故直線 的斜率 ,
且過點 ,所以直線 的方程為: .
令 ,得 ,
由 ,得 ,
則 , ,
又 ,當且僅當 時等號成立,
故答案為:m的取值范圍為 或
【解析】(1)設(shè)動點M的坐標為(x,y),利用斜率之積已知,結(jié)合斜率公式得到關(guān)于點M的坐標的方程即為所求.
(2)由于點PQ關(guān)于直線l對稱,可將PQ中點D的坐標用點P的坐標表示出來,同時將直線l的斜率也表示出來,即將直線l的方程用點P的坐標不表示,令x=0,將m表示為點P的坐標的函數(shù)式,用均值不等式求最值.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}是以a為首項,q為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列{cn}滿足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}為等比數(shù)列,則a+q=( )
A.
B.3
C.
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)< ,則f(x)< 的解集為( )
A.{x|-1<x<1}
B.{x|x<-1}
C.{x|x<-1,或x>1}
D.{x|x>1}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) 是定義在 上的函數(shù),則“函數(shù) 為偶函數(shù)”是“函數(shù) 為奇函數(shù)”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=1+ +sin x在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.1
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某校高中男生中隨機選取100名學生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
(1)估計該校的100名同學的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點值作代表);
(2)若要從體重在 , , 三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個活動隊,再從這6人中選2人當正副隊長,求這2人中至少有1人體重在 內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中, 平面 , , , , , , , 是 的中點.
(Ⅰ)求證: ;
(Ⅱ)求平面 與平面 所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“求方程 的解”有如下解題思路:設(shè) ,則 在 上單調(diào)遞減,且 ,所以原方程有唯一解 .類比上述解題思路,不等式 的解集是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com