【題目】如圖,已知橢圓,左頂點(diǎn)為,經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)作斜率為的直線(xiàn)交橢圓于點(diǎn),交軸于點(diǎn).

1)求橢圓的方程;

2)已知的中點(diǎn),,證明:對(duì)于任意的都有恒成立;

3)若過(guò)點(diǎn)作直線(xiàn)的平行線(xiàn)交橢圓于點(diǎn),求的最小值.

【答案】1;(2)見(jiàn)解析;(3.

【解析】

1)根據(jù)待定系數(shù)法求得橢圓的方程;

2)利用點(diǎn)差法求出直線(xiàn)的斜率,再利用直線(xiàn)的斜率相乘為,證得兩直線(xiàn)垂直;

3)將式子表示成關(guān)于的表達(dá)式,再利用基本不等式求得最小值.

1)由題意得:,所以橢圓,

因?yàn)辄c(diǎn)在橢圓上,所以,

所以橢圓的方程為.

2)設(shè),

所以,

所以

因?yàn)橹本(xiàn)的斜率為,所以,

設(shè)直線(xiàn)的方程為,

當(dāng)時(shí),,故,

所以,所以,

所以對(duì)于任意的都有恒成立.

3)因?yàn)?/span>,所以設(shè)的方程為,代入得:,

所以,.

,得,

所以弦長(zhǎng)

所以,

所以,

等號(hào)成立當(dāng)且僅當(dāng).

所以的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書(shū)里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿(mǎn)足下列條件的橢圓的標(biāo)準(zhǔn)方程:

(1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過(guò)點(diǎn)M(3,2);

(2)ca=5∶13,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離的和為26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足是數(shù)列的前項(xiàng)的和.

(1)求數(shù)列的通項(xiàng)公式;

(2)若成等差數(shù)列,,18,成等比數(shù)列求正整數(shù)的值;

(3)是否存在,使得為數(shù)列中的項(xiàng)若存在,求出所有滿(mǎn)足條件的的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.設(shè),則“”是“”的必要而不充分條件

D.設(shè),則“”是“”的必要 不 充 分 條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,是給定的非零整數(shù),

1)若,,求;

2)證明:從中一定可以選取無(wú)窮多項(xiàng)組成兩個(gè)不同的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A.命題“若,則”的逆否命題為:“若,則

B.”是“”的充分而不必要條件

C.為假命題,則、均為假命題

D.命題“存在,使得”,則非“任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界衛(wèi)生組織的最新研究報(bào)告顯示,目前中國(guó)近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過(guò)七成,為了研究每周累計(jì)戶(hù)外暴露時(shí)間(單位:小時(shí))與近視發(fā)病率的關(guān)系,對(duì)某中學(xué)一年級(jí)200名學(xué)生進(jìn)行不記名問(wèn)卷調(diào)查,得到如下數(shù)據(jù):

每周累積戶(hù)外暴露時(shí)間(單位:小時(shí))

不少于28小時(shí)

近視人數(shù)

21

39

37

2

1

不近視人數(shù)

3

37

52

5

3

(1)在每周累計(jì)戶(hù)外暴露時(shí)間不少于28小時(shí)的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;

(2)若每周累計(jì)戶(hù)外暴露時(shí)間少于14個(gè)小時(shí)被認(rèn)證為“不足夠的戶(hù)外暴露時(shí)間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為不足夠的戶(hù)外暴露時(shí)間與近視有關(guān)系?

近視

不近視

足夠的戶(hù)外暴露時(shí)間

不足夠的戶(hù)外暴露時(shí)間

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案