【題目】甲、乙兩名射擊運動員在進行射擊訓練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,任意兩次射擊相互獨立.

1)求甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;

2)現(xiàn)在甲、乙兩人進行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負,環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結(jié)束,求恰好進行3輪射擊后比賽結(jié)束的概率

【答案】(1)(2)

【解析】

1)甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18包含第一次10環(huán)和第二次8環(huán)第一次8環(huán)第二次10環(huán),第一次9環(huán)和第二次9環(huán)這三種情況,分別求三種情況概率再求和;

2)求恰好進行3輪射擊后比賽結(jié)束的概率,先確定甲勝利,平局,失敗的概率,恰好進行3輪射擊后比賽結(jié)束情形包括兩種:①當甲獲得最終勝利結(jié)束3輪比賽時,由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒有獲得勝利,算出其概率P1;②當乙獲得最終勝利結(jié)束3輪比賽時,則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒有獲得勝利,其概率P2,兩情形概率之和即為所求.

1)記X表示甲運動員兩次射擊命中環(huán)數(shù)之和,

X18包含第一次10環(huán)和第二次8環(huán),第一次8環(huán)第二次10環(huán)第一次9環(huán)和第二次9環(huán)這三種情況,

∴甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率為:

P.

2)記Ai表示甲在第i輪勝利,Bi表示甲在第i輪平局,i表示甲在第i輪失敗,

PAi,PBiPi,

①當甲獲得最終勝利結(jié)束3輪比賽時,由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒有獲得勝利,

其概率P1,

②當乙獲得最終勝利結(jié)束3輪比賽時,則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒有獲得勝利,

其概率P2,

∴經(jīng)過3輪比賽結(jié)束的概率P.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,且,

(1)求的值,并求出及數(shù)列的通項公式;

(2)設求數(shù)列的前n項和

(3)設在數(shù)列中取出(為常數(shù))項,按照原來的順序排成一列,構(gòu)成等比數(shù)列.若對任意的數(shù)列,均有試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱中,是棱上的一點,平面,,.

(1)若的中點,證明:平面平面

(2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,且點在橢圓上.

1)求橢圓的標準方程;

2)當點在橢圓的圖像上運動時,點在曲線上運動,求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點的任意一點作曲線的兩條切線,切點分別為不在坐標軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意xR,存在函數(shù)fx)滿足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】狄利克雷函數(shù)為F(x).有下列四個命題:①此函數(shù)為偶函數(shù),且有無數(shù)條對稱軸;②此函數(shù)的值域是;③此函數(shù)為周期函數(shù),但沒有最小正周期;④存在三點,使得△ABC是等腰直角三角形,以上命題正確的是( 。

A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某餅屋進行為期天的五周年店慶活動,現(xiàn)策劃兩項有獎促銷活動,活動一:店慶期間每位顧客一次性消費滿元,可得元代金券一張;活動二:活動期間每位顧客每天有一次機會獲得一個一元或兩元紅包.根據(jù)前一年該店的銷售情況,統(tǒng)計了位顧客一次性消費的金額數(shù)(元),頻數(shù)分布表如下圖所示:

一次性消費金額數(shù)

人數(shù)

以這位顧客一次消費金額數(shù)的頻率分布代替每位顧客一次消費金額數(shù)的概率分布.

1)預計該店每天的客流量為人次,求這次店慶期間,商家每天送出代金券金額數(shù)的期望;

2)假設顧客獲得一元或兩元紅包的可能性相等,商家在店慶活動結(jié)束后會公布幸運數(shù)字,連續(xù)元的店慶幸運紅包一個.若公布的幸運數(shù)字是,求店慶期間一位連續(xù)天消費的顧客獲得紅包金額總數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直四棱柱的側(cè)棱長為,底面是邊長的矩形,的中點,

1)求證:平面,

2)求異面直線所成的角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.設數(shù)列的前n項和為且滿足

1)求數(shù)列的通項公式;

2)若求正整數(shù)的值;

3)是否存在正整數(shù),使得恰好為數(shù)列的一項?若存在,求出所有滿足條件的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案