【題目】如圖,四棱柱中,是棱上的一點,平面,,,.
(1)若是的中點,證明:平面平面;
(2)若,求平面與平面所成銳二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)由線面垂直的判定定理,證得平面,得到,又由,證得,進(jìn)而得到平面,再由面面垂直的判定定理,即可證得結(jié)論;
(2)以為原點,,,分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,求得平面的法向量為和平面的法向量為,利用向量的夾角公式,即可求解.
(1)因為平面,所以,
又,故平面,
平面,故,
因為,所以,同理,
所以,又,
所以平面,
又平面,
所以平面平面.
(2)設(shè),則,,
以為原點,,,分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系.
則,,,,,
,,,,
記平面的法向量為,記平面的法向量為,
由,得,
由,得,
則,
所以平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“五行”是中國古代哲學(xué)的一種系統(tǒng)觀,廣泛用于中醫(yī)、堪輿、命理、相術(shù)和占卜等方面.古人把宇宙萬物劃分為五種性質(zhì)的事物,也即分成木、火、土、金、水五大類,并稱它們?yōu)?/span>“五行”.中國古代哲學(xué)家用五行理論來說明世界萬物的形成及其相互關(guān)系,創(chuàng)造了五行相生相克理論.相生,是指兩類五行屬性不同的事物之間存在相互幫助,相互促進(jìn)的關(guān)系,具體是:木生火,火生土,土生金,金生水,水生木.相克,是指兩類五行屬性不同的事物之間是相互克制的關(guān)系,具體是:木克土,土克水,水克火、火克金、金克木.現(xiàn)從分別標(biāo)有木,火,土,金,水的根竹簽中隨機(jī)抽取根,則所抽取的根竹簽上的五行屬性相克的概率為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標(biāo)上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實數(shù)集上的偶函數(shù)和奇函數(shù)滿足.
(1)求與的解析式;
(2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);
(3)設(shè)(其中為常數(shù)),若對于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩隊參加聽歌猜歌名游戲,每隊人.隨機(jī)播放一首歌曲, 參賽者開始搶答,每人只有一次搶答機(jī)會,答對者為本隊贏得一分,答錯得零分, 假設(shè)甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響.
(1)若比賽前隨機(jī)從兩隊的個選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個隊的概率;
(2)用表示甲隊的總得分,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(3)求兩隊得分之和大于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,前項和為,且.
(1)求,的值;
(2)證明:數(shù)列是等差數(shù)列,并寫出其通項公式;
(3)設(shè)(),試問是否存在正整數(shù),(其中,使得,,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當(dāng)時,,求在時的解析式,并寫出在()時的解析式;
(3)對于(2)中的函數(shù),若關(guān)于x的方程恰好有20個解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運動員在進(jìn)行射擊訓(xùn)練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,,任意兩次射擊相互獨立.
(1)求甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;
(2)現(xiàn)在甲、乙兩人進(jìn)行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負(fù),環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結(jié)束,求恰好進(jìn)行3輪射擊后比賽結(jié)束的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,,.
(1)求中所有元素的和,并寫出集合中元素的個數(shù);
(2)求證:能將集合分成兩個沒有公共元素的子集和,,使得成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com