【題目】如圖所示,直四棱柱的側(cè)棱長為,底面是邊長的矩形,的中點(diǎn),

1)求證:平面,

2)求異面直線所成的角的大。ńY(jié)果用反三角函數(shù)表示).

【答案】1)見解析;(2

【解析】

1)先證明ECED,再利用BC⊥平面CC1D1D,證明BCDE,即可證明DE⊥平面EBC;

2)取A1B1中點(diǎn)F,連接BF,DF,∠FBD即為所求異面直線的夾角(或其補(bǔ)角),確定FBD為各邊長,根據(jù)余弦定理可求FBD余弦值,從而求異面直線BDEC所成的角的大。

(1)證明:∵直四棱柱的側(cè)棱長為,

底面ABCD是邊長AB=2a,BC=a的矩形,

的中點(diǎn),

EC=ED=a,CD=2a,

ECED,

BC⊥平面,DE平面

BCDE,

BCEC=C

DE⊥平面EBC.

(2)A1B1中點(diǎn)F,連接BF,DF,

易得ECFB

∴∠FBD即為所求異面直線的夾角(或其補(bǔ)角),

連接D1F,DD1F為直角三角形,

,

根據(jù)余弦定理,,

異面直線所成的角的大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實數(shù)集上的偶函數(shù)和奇函數(shù)滿足

1)求的解析式;

2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);

3)設(shè)(其中為常數(shù)),若對于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運(yùn)動員在進(jìn)行射擊訓(xùn)練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,,任意兩次射擊相互獨(dú)立.

1)求甲運(yùn)動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;

2)現(xiàn)在甲、乙兩人進(jìn)行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負(fù),環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結(jié)束,求恰好進(jìn)行3輪射擊后比賽結(jié)束的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年數(shù)學(xué)競賽請自以為來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設(shè)這位選手可能的答題次序有n種,則n的值為(

A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)是橢圓的一個頂點(diǎn),是等腰直角三角形.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上一動點(diǎn),求線段的中點(diǎn)的軌跡方程;

3)過點(diǎn)分別作直線交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,

,探究:直線是否過定點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,.

1)求中所有元素的和,并寫出集合中元素的個數(shù);

2)求證:能將集合分成兩個沒有公共元素的子集,,使得成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,短軸長為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函數(shù)f(x)R上單調(diào)遞增,求實數(shù)a的取值范圍;

(3)是否存在實數(shù)a,使不等式f(x)≥2x3對任意xR恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案