【題目】如圖,D是AC的中點,四邊形BDEF是菱形,平面平面ABC,,,.
若點M是線段BF的中點,證明:平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
試題分析:(1)連接,. .由四邊形為菱形,可證.由平面平面,可證平面.即可證明平面;
2)設線段的中點為,連接.易證平面.以為坐標原點,,,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系.求出相應點及向量的坐標,求得平面,平面的法向量,.。利用空間向量夾角公式可求得平面與平面所成的銳二面角的余弦值.
試題解析:
(1)連接,∵四邊形為菱形,且,
∴為等邊三角形.
∵為的中點,∴.
∵,,又是的中點,
∴.
∵平面平面,平面平面,平面,
∴平面.
又平面,∴.
由,,,
∴平面.
(2)設線段的中點為,連接.易證平面.以為坐標原點,,,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系.則,,,,.
∴,,,.
設平面,平面的法向量分別為,.
由 .
解得.
取,∴.
又由 解得.
取,∴.
∵ .
∴平面與平面所成的銳二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】宋元時期杰出的數學家朱世杰在其數學巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數,等價于層數)幾何?”中探討了“垛積術”中的落一形垛(“落一形”即是指頂上束,下一層束,再下一層束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數),則本問題中三角垛底層菱草總束數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列結論:
①“且為真”是“或為真”的充分不必要條件:②“且為假”是“或為真”的充分不必要條件;③“或為真”是“非為假”的必要不充分條件;④“非為真”是“且為假”的必要不充分條件.
其中,正確的結論是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,直線l1的參數方程為(t為參數),直線l2的參數方程為.設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數,簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為且;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場比賽獲得第三名
B. 每場比賽第一名得分為
C. 甲可能有一場比賽獲得第二名
D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設三棱錐的底面是正三角形,側棱長均相等,是棱上的點(不含端點),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com