若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則稱m為離實(shí)數(shù)x最近的整數(shù),記作I[x],即I[x]=m.設(shè)集合A={(x,y)|f(x)=x-I[x],x∈R},B={(x,y)|g(x)=logax},其中0<a<1,若集合A∩B的元素恰有三個(gè),則a的取值范圍為
 
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:若集合A∩B的元素恰有三個(gè),則函數(shù)f(x)=x-I[x]與g(x)=logax的圖象有且只有三個(gè)交點(diǎn),在同一坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象,進(jìn)而構(gòu)造關(guān)于a的不等式組即可.
解答: 解:y=f(x)=x-I[x]的圖象如下圖所示:

若集合A∩B的元素恰有三個(gè),
則函數(shù)f(x)=x-I[x]與g(x)=logax的圖象有且只有三個(gè)交點(diǎn),
loga
1
2
1
2
loga
3
2
>-
1
2
loga
5
2
≤-
1
2

解得:a∈[
4
25
,
1
4
],
故答案為:[
4
25
,
1
4
]
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合交集運(yùn)算,函數(shù)圖象,是函數(shù)與集合的綜合應(yīng)用,其中對(duì)數(shù)不等式的解法是解答的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),其中點(diǎn)A(-3,4),AB邊與y軸交與點(diǎn)D.
(1)求直線AB解析式;
(2)求△AOD的面積及其外接圓的面積;
(3)問△AOD的外接圓與BC所在的直線是否相切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“對(duì)?x∈R,x2-2x+m≥0恒成立”,命題q:“方程
x2
m-4
+
y2
6-m
=1表示雙曲線”.
(1)若p為假命題,求實(shí)數(shù)m的取值范圍;
(2)若p∧q是假命題,p∨q是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+mx,其中m為常數(shù).
(Ⅰ)當(dāng)m=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在區(qū)間(0,e]上的最大值為-3,求m的值;
(Ⅲ)令g(x)=
f(x)+2
x
-f′(x),若x≥1時(shí),有不等式g(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)非空集合M={x|x2-8x+k<0},N={x|x2-4x+3<0},P={x|x2-10x+16<0}滿足:若a∈M,則a∈N∪P,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=
.
i1
ii
.
(i是虛數(shù)單位),則
.
z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)sin2α+sin2β-sin2αcos2β-sin2αsin2β的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若a=5,b=4,cosA=cos2B,則c的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=e|x-1|的圖象關(guān)于直線x=1對(duì)稱,q:函數(shù)y=cos(2x+
π
6
)的圖象關(guān)于點(diǎn)(
π
6
,0)對(duì)稱,則下列命題中的真命題為( 。
A、p∧qB、p∧¬q
C、¬p∧qD、¬p∨¬q

查看答案和解析>>

同步練習(xí)冊(cè)答案