【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),記數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{an2}的前n項(xiàng)和為Tn,且3TnSn2+2Sn,n∈N*

(Ⅰ)求a1的值;

(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅲ)k,t∈N*,且S1,SkS1StSk成等比數(shù)列,求kt的值.

【答案】(1)a1=1(2)an=2n1n∈N*.(3)k=2,t=3.

【解析】試題分析:(1)由,得,解方程即可得結(jié)果;(2)因?yàn)?/span>,兩式相減可得再得,再相減可得是等差數(shù)列,從而可得結(jié)果;(3)由(2)可知,根據(jù)成等比數(shù)列可得,只需證明以上等式無整數(shù)解即可.

試題解析:解:(1)由3T1S12+2S1,得3a12a12+2a1,即a12a1=0.

因?yàn)?/span>a1>0,所以a1=1.

(2)因?yàn)?TnSn2+2Sn, ①

所以3Tn1Sn12+2Sn1,②

②-①,得3an12Sn12Sn2+2an1

因?yàn)?/span>an1>0,

所以3an1Sn1Sn+2, ③

所以3an2=Sn2Sn1+2,④

④-③,得3an2-3an1an2an1,即an2=2an1,

所以當(dāng)n≥2時, 2

又由3T2S22+2S2,得3(1+a22)=(1+a2)2+2(1+a2),

a22-2a2=0.

因?yàn)?/span>a2>0,所以a2=2,所以=2,所以對nN*,都有=2成立,

所以數(shù)列{an}的通項(xiàng)公式為an=2n1,n∈N*

(3)由(2)可知Sn=2n-1.

因?yàn)?/span>S1,SkS1StSk成等比數(shù)列,

所以(SkS1)2S1(StSk),即(2k-2)2=2t-2k,

所以2t=(2k)2-32k+4,即2t2=(2k1)2-32k2+1(*).

由于SkS1≠0,所以k≠1,即k≥2.

當(dāng)k=2時,2t=8,得t=3.

當(dāng)k≥3時,由(*),得(2k1)2-32k2+1為奇數(shù),

所以t-2=0,即t=2,代入(*)得22k2-32k2=0,即2k=3,此時k無正整數(shù)解.

綜上,k=2,t=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)上具有單調(diào)性,求實(shí)數(shù)的取值范圍;

(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的圖象如圖所示,下列數(shù)值排序正確的是(

A.0<f′(2)<f′(3)<f(3)﹣f(2)
B.0<f′(3)<f(3)﹣f(2)<f′(2)
C.0<f(3)<f′(2)<f(3)﹣f(2)
D.0<f(3)﹣f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率 ,過點(diǎn)A(0,﹣b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)已知定點(diǎn)E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn),問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于命題:若O是線段AB上一點(diǎn),則有| | +| | = .將它類比到平面的情形是:若O是△ABC內(nèi)一點(diǎn),則有SOBC +SOCA +SOBA = ,將它類比到空間情形應(yīng)該是:若O是四面體ABCD內(nèi)一點(diǎn),則有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用寒假進(jìn)行社會實(shí)踐活動,對歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是

否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得

到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

(I)補(bǔ)全頻率分布直方圖并求、、的值

(II)從年齡段在低碳族中采用分層抽樣法抽取人參加戶外低碳體驗(yàn)活動,其中選取人作為領(lǐng)隊(duì),求選取的名領(lǐng)隊(duì)中恰有1人年齡在歲的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n對任意n∈N*都成立,則實(shí)數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x2=8y.AB是拋物線C的動弦,且AB過F(0,2),分別以A,B為切點(diǎn)作軌跡C的切線,設(shè)兩切線交點(diǎn)為Q,證明:AQ⊥BQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx= ,其中a0

)若a=1,求曲線y=fx)在點(diǎn)(2,f2))處的切線方程;

)若在區(qū)間上,fx)>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案