【題目】在直角坐標系xOy上取兩個定點A1(,0),A2(,0),再取兩個動點N1(0,m),N2(0,n),且mn=2.
(1)求直線A1N1與A2N2交點M的軌跡C的方程;
(2)過R(3,0)的直線與軌跡C交于P,Q,過P作PN⊥x軸且與軌跡C交于另一點N,F為軌跡C的右焦點,若(λ>1),求證:.
【答案】(1)1(x≠±);(2)證明見解析
【解析】
(1)根據(jù)題意先寫出兩直線的方程,再根據(jù)條件化簡即可求得答案;
(2)設P(x1,y1),Q(x2,y2),設l:x=ty+3,聯(lián)立直線與橢圓的方程,由韋達定理得y1+y2且y1y2,根據(jù)題意得 x1﹣3=λ(x2﹣3),y1=λy2,再代入即可證明結論.
(1)解:依題意知直線A1N1的方程為:y(x)…①;
直線A2N2的方程為:y(x)…②
設Q(x,y)是直線A1N1與A2N2交點,①、②相乘,得y2(x2﹣6)
由mn=2整理得:1
∵N1、N2不與原點重合,可得點A1,A2不在軌跡M上,
∴軌跡C的方程為1(x≠±);
(2)證明:設l:x=ty+3,代入橢圓方程消去x,得(3+t2)y2+6ty+3=0.
設P(x1,y1),Q(x2,y2),N(x1,﹣y1),可得y1+y2且y1y2,
,可得(x1﹣3,y1)=λ(x2﹣3,y2),∴x1﹣3=λ(x2﹣3),y1=λy2,
證明,只要證明(2﹣x1,y1)=λ(x2﹣2,y2),∴2﹣x1=λ(x2﹣2),
只要證明,只要證明2t2y1y2+t(y1+y2)=0,
由y1+y2且y1y2,代入可得2t2y1y2+t(y1+y2)=0,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】英國統(tǒng)計學家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結果 | 民事庭 | 行政庭 | 合計 | 終審結果 | 民事庭 | 行政庭 | 合計 |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計 | 32 | 118 | 150 | 合計 | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,則下面說法正確的是
A. ,,B. ,,
C. ,,D. ,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域為,其中,.
(1)若,判斷的單調性;
(2)當,設函數(shù)在區(qū)間上恰有一個零點,求正數(shù)a的取值范圍;
(3)當,時,證明:對于,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,過點,且該橢圓的短軸端點與兩焦點,的張角為直角.
(1)求橢圓E的方程;
(2)過點且斜率大于0的直線與橢圓E相交于點P,Q,直線AP,AQ與y軸相交于M,N兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線AC與BD相交于點O,四邊形ACFE為梯形,EF//AC,點E在平面ABCD上的射影為OA的中點,AE與平面ABCD所成角為45°.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)設為曲線上的點,,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是有如下性質:如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)如果函數(shù)的值域為,求b的值;
(2)研究函數(shù)(常數(shù))在定義域內的單調性,并說明理由;
(3)對函數(shù)和(常數(shù))作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)(n是正整數(shù))在區(qū)間上的最大值和最小值.(可利用你的研究結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線()上的兩個動點和,焦點為F.線段AB的中點為,且A,B兩點到拋物線的焦點F的距離之和為8.
(1)求拋物線的標準方程;
(2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com