精英家教網 > 高中數學 > 題目詳情
8.若α為第四象限角,則$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=( 。
A.$-\frac{2}{sinα}$B.$-\frac{2}{tanα}$C.$\frac{2}{{co{s}α}}$D.$-\frac{2}{sinαcosα}$

分析 原式被開方數分子分母都等于分母,利用同角三角函數間的基本關系及二次根式性質化簡,即可得到結果.

解答 解:∵若α為第四象限角,
∴sinα<0,
∴$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=$\frac{\sqrt{1-cos^{2}α}}{1-co{s}α}$+$\frac{\sqrt{1-cos^{2}α{\;}}}{1+co{s}α}$
=$\frac{-sinα}{1-cosα}$+$\frac{-sinα}{1+cosα}$
=$\frac{-sinα-sinαcosα-sinα+sinαcosα}{si{n}^{2}α}$
=-$\frac{2}{sinα}$.
故選:A.

點評 此題考查了同角三角函數基本關系的運用,熟練掌握基本關系是解本題的關鍵,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函數h(x)=f[g(x)]的圖象關于直線x=2對稱,求a的值;
(Ⅱ)給出函數y=g[f(x)]的零點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知雙曲線$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的漸近線方程為$y=±\frac{3}{4}x$,且其焦點為(0,5),則雙曲線C的方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知直線x+y+4=0被圓x2+y2+2x-2y+a=0所截得弦長為2,則實數a的值為( 。
A.-1B.-4C.-7D.-10

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知圓${C_1}:{x^2}+{y^2}+2x=0$,圓${C_2}:{x^2}+{y^2}-2x-2y-2=0$,C1,C2分別為兩圓的圓心.
(Ⅰ)求圓C1和圓C2的公共弦長;
(Ⅱ)過點C1的直線l交圓C2與A,B,且$AB=\sqrt{14}$,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知橢圓$\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$,左右焦點分別為F1,F2,過F1的直線l交橢圓于A,B兩點,若|BF2|+|AF2|的最大值為6,則b的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.如圖,已知△ABC和△EBC是邊長為2的正三角形,平面EBC⊥平 面ABC,AD⊥平面ABC,且$AD=2\sqrt{3}$.
(Ι)證明:AD∥平面EBC;
(II)求三棱錐E-ABD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知f(x)是定義在R上的偶函數,并滿足f(x+2)=-$\frac{1}{f(x)}$,當1≤x<2時,$f(x)={log_{\frac{1}{2}}}({2-x})$,則f(6.5)=1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=|x-2|-|x+2|.
(1)把函數寫成分段函數的形式,并畫出函數圖象;
(2)根據圖象寫出函數的值域,并證明函數的奇偶性.

查看答案和解析>>

同步練習冊答案